

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release. Distribution is unlimited.

AGENT AND COMPONENT OBJECT FRAMEWORK
FOR CONCEPT DESIGN MODELING OF MOBILE

CYBER–PHYSICAL SYSTEMS

by

Curtis G. Adams

March 2018

Dissertation Supervisor Ronald E. Giachetti

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
March 2018

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE
AGENT AND COMPONENT OBJECT FRAMEWORK FOR CONCEPT
DESIGN MODELING OF MOBILE CYBER–PHYSICAL SYSTEMS

5. FUNDING NUMBERS

6. AUTHOR(S) Curtis G. Adams

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

U.S. Army Tank Automotive Research, Development and Engineering
Center (TARDEC)
6501 E. 11 Mile Rd.
Warren, MI 48397-5000

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Military intelligent ground vehicle systems (MIGVS) have a wide variation in computationally
controlled behavior logic that involves the interaction of both cyber and physical components as well as
more typical systems engineering modeling needs and constraints. Current system concept design methods
do not sufficiently address either the variation in cyber behavior linked to mission effectiveness or the
integrated dependencies and interaction between the cyber and physical components. In this work, model-
based concepts are developed to capture the required behavior logic as solution and assembly independent
state-based agents and objects. These logical objects can be realized by alternative implementations and
assembly aggregations, to include “human assemblies.” The approach contributes a more thorough and
robust model of the subject problem domain. These concepts include an agent and component object
system data metamodel, supporting structural system classes, and state-based behavior concepts. The
concepts are applied to a case study project to produce a solution-independent system concept design.

14. SUBJECT TERMS
model-based system architecture, agent, component object, cyber-physical systems, concept
design, autonomous convoy, intelligent behavior, architecture meta model, context model,
logical model, trajectory, goals, agent logical object

15. NUMBER OF
PAGES

303
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release. Distribution is unlimited.

AGENT AND COMPONENT OBJECT FRAMEWORK FOR CONCEPT DESIGN
MODELING OF MOBILE CYBER–PHYSICAL SYSTEMS

Curtis G. Adams
B.S., Michigan State University, 1979

M.S., University of Michigan–Dearborn, 1999

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2018

Author:

Approved by: Ronald E. Giachetti
Professor of Systems Engineering
Dissertation Supervisor

Raymond Madachy Bryan O’Halloran
Associate Professor Associate Professor
Systems Engineering Systems Engineering

Marcus Stefanou John M. Reed
Associate Professor Senior Operations Analyst
Computer Science U.S. Army TARDEC

Approved by: Ronald E. Giachetti, Chair, Department of Systems Engineering

Approved by: Orrin. D. Moses, Vice Provost for Academic Affairs

Curtis G. Adams

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Military intelligent ground vehicle systems (MIGVS) have a wide variation in

computationally controlled behavior logic that involves the interaction of both cyber and

physical components as well as more typical systems engineering modeling needs and

constraints. Current system concept design methods do not sufficiently address either the

variation in cyber behavior linked to mission effectiveness or the integrated dependencies

and interaction between the cyber and physical components. In this work, model-based

concepts are developed to capture the required behavior logic as solution and assembly

independent state-based agents and objects. These logical objects can be realized by

alternative implementations and assembly aggregations, to include “human assemblies.”

The approach contributes a more thorough and robust model of the subject problem

domain. These concepts include an agent and component object system data metamodel,

supporting structural system classes, and state-based behavior concepts. The concepts are

applied to a case study project to produce a solution-independent system concept design.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND AND MOTIVATION ..1

1. An Historical Perspective on System Behavior Logic5
2. Model-Based System Concept Design ..14
3. Summary ...21

B. PROBLEM STATEMENT ...23
C. RESEARCH SCOPE AND OBJECTIVES ...23
D. RESEARCH QUESTIONS ...25
E. RESEARCH VALUE AND METHOD ...26

II. PRIOR WORK...31
A. GENERAL SYSTEM ARCHITECTURE APPROACHES AND

METHODS ...31
1. Domain Models...31
2. Model-Based System Architecture ...35
3. Architecture and Modeling Design Languages42

B. CPS SYSTEM ARCHITECTURE ...45
1. “CPS-Like” Engineering, Architecture and Modeling.............45
2. CPS Engineering, Architecture and Modeling53

C. SUMMARY ..67

III. AGENT AND OBJECT ORIENTED MODEL-BASED CONCEPT
DESIGN FOR MOBILE CYBER-PHYSICAL SYSTEMS71
A. MOBILE CYBER-PHYSICAL SYSTEM LOGICAL

STRUCTURE AND BEHAVIOR CONCEPTS72
1. System Performer Object ..74
2. Context Object ...78
3. System Connected Object..79
4. Mission/Tasks/Desired Trajectory/Goals...................................81
5. Agent Logical Object ...86
6. System Behavior Thread ...93

B. SOLUTION INDEPENDENT MCPS OBJECT ORIENTED
BEHAVIOR CONCEPT DESIGN ...95
1. MCPS Domain Structural Model Concepts96
2. Solution Independent Behavior and Logical Concept

Design ..108

 viii

IV. PALLETIZED LOADING SYSTEM CONVOY FOLLOWER119
A. MIGVS DOMAIN ..119

1. MIGVS Domain System Class Reference Model119
2. System Context Reference Model ...129
3. MIGVS Concept Design ..132
4. Palletized Loading System (PLS) and Convoy135

B. AGENT- AND OBJECT-BASED PLS CONCEPT MODEL137
1. PLS and Mission Agent ...143
2. Material Handling ..153
3. Tactical Command Control and Communications171
4. Intelligence Reconnaissance Surveillance and Target

Acquisition ..173
5. Mobility ...175
6. System Command Control and Autonomics177

C. PLS MODEL QUALITATIVE ANALYSIS182

V. CONCLUSIONS AND RECOMMENDATIONS ...189
1. Limitations ..192
2. Future Work ...193

APPENDIX. PLS SYSML MODEL DIAGRAMS ..197
B. MATERIAL HANDLING...197

1. MH Assigned Mission ..197
2. MH Logical Object Hierarchy ..200
3. MH Interactions ...200
4. MH Agent Internal Composition ..200
5. MH Detection Agent Behavior ..202

C. TACTICAL COMMAND CONTROL AND
COMMUNICATIONS ..203
1. TC3 Assigned Mission ...203
2. TC3 Logical Object Hierarchy ...204
3. TC3 Interactions ..205
4. TC3 Agent Internal Composition ...206
5. TC3 Agent Behavior ..209

D. INTELLIGENCE RECONNAISSANCE SURVEILLANCE
AND TARGET ACQUISITION ...211
1. IRSTA Assigned Mission ...211
2. IRSTA Logical Object Hierarchy...215
3. IRSTA Interactions ..216
4. IRSTA Agent Internal Composition ..216

 ix

5. IRSTA Agent Behavior..219
E. MOBILITY ...221

1. Mobility Assigned Mission ..222
2. Mobility Logical Object Hierarchy ..235
3. Mobility Interactions ...237
4. Mobility Agent Internal Composition239
5. Mobility Agent Behavior ...245

F. SYSTEM COMMAND CONTROL AND AUTONOMICS245
1. SC2A Assigned Mission ...246
2. SC2A Logical Object Hierarchy ...249
3. SC2A Interactions ..250
4. SC2A Agent Internal Composition...252
5. SC2A Agent Behavior ..254

LIST OF REFERENCES ..257

INITIAL DISTRIBUTION LIST ...271

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. NSF Cyber-Physical System Technology Challenges. Source: NSF
(2015). ..2

Figure 2. General MCPS Model ..4

Figure 3. An OOAD 4+1 Architecture Model View. Adapted from No Magic
(2015). ..7

Figure 4. DODAF Concept Data Meta Model. Source: DOD CIO (n.d).9

Figure 5. Ground Vehicle System “Product” WBS. Source: MIL-STD-881C
Appendix G (2010). ...16

Figure 6. Integration of Operational and System Models ...19

Figure 7. MIGVS Architecture Concept DM2 ..24

Figure 8. Domain Ontology. Source: Semy, Pulvermacher and Orbst (2004).34

Figure 9. INCOSE OOSEM. Source: Estefan (2008) and House and Pearce
(2012). ..36

Figure 10. State Based Control Architecture. Source: Wagner et al. (2012).38

Figure 11. AADL Cruise Control System Hierarchy. Source: Hudak and Feiler
(2007). ..44

Figure 12. 4D/RCS Computational Node. Source: Albus (2002).46

Figure 13. RCS Based Notional Military System and Unit Structure. Source:
Albus (2002). ...46

Figure 14. RCS Methodology for Knowledge Capture and Representation.
Source: Albus and Barbera (2004). ..47

Figure 15. Multiagent Systems Engineering. Source: Deloach et al. (2001).49

Figure 16. Mechatronic System V-Model. Source: Thramboulidis (2010).50

Figure 17. Holonic Building Blocks in Manufacturing Systems. Source: Van
Brussel et al. (1998). ..51

Figure 18. IEC 61499 Functional Blocks. Source: Salazar and Alvarado (2014).52

 xii

Figure 19. Manufacturing System 5C Architecture. Source: Lee, Bagheri, and
Kao (2014). ..53

Figure 20. “IoT-like” CPS Architecture. Source: Tan, Varun and Goddard
(2009). ..55

Figure 21. Platform-Based Design. Source: Sangiovanni-Vincentelli (2008).57

Figure 22. Computing Abstraction Layers. Source: Lee (2008).58

Figure 23. Actor Model and Abstraction Hierarchy. Source: Lee (2003).59

Figure 24. Ptolemy II Models of Computation. Source: Ptolemy II (2014).60

Figure 25. Base Architecture for Collision Avoidance System. Source: Rajhans
et al. (2014). ...62

Figure 26. Hierarchical Information Architecture. Source: Jobst and Prehofer
(2016). ..67

Figure 27. MCPS Architecture Data Meta Model ...73

Figure 28. General System Performer Object Model ..75

Figure 29. Hierarchy of Goals and Reference Trajectories ...82

Figure 30. Notional Mission Trajectories Graph ...85

Figure 31. Agent Logical Object (ALO) Pattern ...87

Figure 32. ALO Internal Behavior ..88

Figure 33. Agent Logical Control Hierarchy ..89

Figure 34. An Agent Computational Stack ...92

Figure 35. System Behavior Thread ..94

Figure 36. Types of World Entities ...97

Figure 37. World State ..98

Figure 38. MCPS Context Classes ..100

Figure 39. A Terrain Decomposition ..101

Figure 40. MCPS Domain Performer Classes ...103

 xiii

Figure 41. Assigned Mission ...104

Figure 42. Goal Constrains ..105

Figure 43. Agent Logical Object Structural Pattern ..106

Figure 44. Example Mission and Task Agent Structure ...107

Figure 45. Mission and Task Agent Hierarchy ...108

Figure 46. System and World Composition ..109

Figure 47. Example Mobility Logical Decomposition ..110

Figure 48. ALO Hierarchical Interactions ...112

Figure 49. Mission Agent Behavior ..113

Figure 50. Mobility Horizontal Behavior Thread ...114

Figure 51. Computational Stack ..116

Figure 55. Agent Model Structural Relationships ...142

Figure 56. PLS Assigned Mission ...145

Figure 57. Mission Agent Logical Object Hierarchy ..146

Figure 58. PLS Performer Logical Object Hierarchy ..147

Figure 59. PLS Context Logical Hierarchy ...148

Figure 60. Mission Agent Horizontal Interactions ..149

Figure 61. Mission Agent Internal Composition ...150

Figure 62. Mission Agent Behavior ..151

Figure 63. Agent Model Integration and Relationships ..152

Figure 64. Supply Effect Task ...154

Figure 65. Acquire Supply Desired Trajectory ...155

Figure 66. Cargo Move Ready Goal ...156

Figure 67. Verify Ground Goal ...157

Figure 68. Verify Supply Desired Trajectory ..158

 xiv

Figure 69. Cargo Sensor Reference Trajectories...159

Figure 70. Load Supply Desired Trajectories ...160

Figure 71. Intelligent Load Control Trajectories...161

Figure 72. Material Handling Logical Object Hierarchy ..162

Figure 73. Material Handling Performer Logical Object Hierarchy163

Figure 74. Cargo Supply Logical Object Hierarchy ..164

Figure 75. Material Handling Top Level Agent Interactions165

Figure 76. Detection Agent and Sensor Interactions ...165

Figure 77. Intelligent Control Agent and Controller Interactions166

Figure 78. Material Handling Task Agent Composition ...167

Figure 79. Cargo Detection Agent Composition ...168

Figure 80. Intelligent Control Agent Composition ...169

Figure 81. Material Handling Task Agent Behavior ...170

Figure 82. Cargo Detection Agent Behavior ...170

Figure 83. Material Handling Intelligent Control Agent Behavior171

Figure 84. TC3 Intelligent Control and Detection Agent IBD173

Figure 85. IRSTA Threat Awareness Goal ...174

Figure 86. IRSTA Agent and Sensor Interactions ...175

Figure 87. Mobility Performer Object ...176

Figure 88. Conduct Convoy Maneuver Desired Trajectory176

Figure 89. SC2A Performer Objects ...178

Figure 90. MH ALO and Computational Stack Vertical Interaction179

Figure 91. MH Computation and Signal Interaction ...179

Figure 92. PLS System Architecture Concept Data Model.......................................180

Figure 93. MHICA Concept Data Example ..181

 xv

Figure 94. Cargo DA Concept Data Example ...181

Figure 95. MH Identify Cargo Desired Trajectory..197

Figure 96. MH Proximity Awareness Desired Trajectory ..198

Figure 97. MH Cargo Ready Desired Trajectory ..198

Figure 98. MH Supply Awareness Desired Trajectory ...199

Figure 99. MH Deliver Supply Desired Trajectory ...199

Figure 100. MH Ground Detection Agent...200

Figure 101. MH Overhead Detection Agent ...201

Figure 102. MH Pedestrian Detection Agent ..201

Figure 103. MH Ground Detection Agent Behavior ...202

Figure 104. MH Overhead Detection Agent Behavior..202

Figure 105. MH Pedestrian Detection Agent ..202

Figure 106. TC3 Command Synchronization Task ...203

Figure 107. TC3 Identify Message Content Desired Trajectory203

Figure 108. TC3 Generate Message Out Trajectory ...204

Figure 109. TC3 Performer Logical Object ..204

Figure 110. TC3TA and TC3ICA/Detection Agent Interactions205

Figure 111. TC3ICA and TC3 Detection Agent with Control and Sensing
Interactions ...205

Figure 112. TC3 Task Agent Internal Composition ..206

Figure 113. TC3 Command Synchronization DA Internal Composition206

Figure 114. TC3 Fragmentary Order DA Internal Composition207

Figure 115. TC3 Pro Word DA Internal Composition ..207

Figure 116. TC3 Tactical Report DA Internal Composition208

Figure 117. TC3ICA Internal Composition ..208

 xvi

Figure 118. TC3 Task Agent Behavior ...209

Figure 119. TC3 Intelligent Control Agent Behavior ...209

Figure 120. TC3 Command Synchronization DA Behavior210

Figure 121. TC3 Fragmentary Order DA Behavior ..210

Figure 122. TC3 Pro Word DA Behavior ...210

Figure 123. TC3 Tactical Report DA Behavior ..211

Figure 124. IRSTA Tactical Awareness Task ...211

Figure 125. IRSTA Detect Geo Location Desired Trajectory212

Figure 126. IRSTA Detect Armored Vehicle (and its geolocation) Desired
Trajectory ...212

Figure 127. IRSTA Detect Armed Individual Desired Trajectory213

Figure 128. IRSTA Detect “IED” Desired Trajectory ..213

Figure 129. IRSTA Detect Shot Desired Trajectory ...214

Figure 130. IRSTA Threat Awareness Desired Trajectory ...214

Figure 131. IRSTA Performer Logical Objects ..215

Figure 132. IRSTA Context Logical Objects ..215

Figure 133. IRSTA Agent and Sensor Interactions ...216

Figure 134. IRSTA Task Agent Internal Composition ...216

Figure 135. IRSTA Armed Individual DA Internal Composition...............................217

Figure 136. IRSTA Armed Vehicle DA Internal Composition...................................217

Figure 137. IRSTA IED DA Internal Composition ..218

Figure 138. IRSTA Shot DA Internal Composition ..218

Figure 139. IRSTA Geolocation DA Internal Composition..219

Figure 140. IRSTA Task Agent Behavior ...219

Figure 141. IRSTA Armed Individual DA Behavior ..220

 xvii

Figure 142. IRSTA Armed Vehicle DA Behavior ..220

Figure 143. IRSTA IED DA Behavior ..220

Figure 144. IRSTA Shot DA Behavior ...221

Figure 145. IRSTA Geolocation DA Behavior ...221

Figure 146. Mobility Conduct Maneuver Task ...222

Figure 147. Mobility Convoy Maneuver Desired Trajectory......................................223

Figure 148. Mobility Follow Ground Guide Desired Trajectory223

Figure 149. Mobility Load Maneuver Desired Trajectory ..224

Figure 150. Mobility Unload Maneuver Desired Trajectory225

Figure 151. Mobility Monitor Mobility Condition Desired Trajectory225

Figure 152. Mobility Pass Route Point Desired Trajectory ..226

Figure 153. Mobility Support Material Handling Desired Trajectory226

Figure 154. Mobility Detect Cargo Content Location ..227

Figure 155. Mobility Detect Cargo Load Location Desired Trajectory227

Figure 156. Mobility Detect Fuel Level Desired Trajectory228

Figure 157. Mobility Detect Ground Guide Desired Trajectory228

Figure 158. Mobility Detect Lead Vehicle Desired Trajectory...................................229

Figure 159. Mobility Detect Motion Desired Trajectory ..229

Figure 160. Mobility Detect Obstacle Desired Trajectory ..230

Figure 161. Mobility Detect Dismount Desired Trajectory ..230

Figure 162. Mobility Detect Military Obstacle Desired Trajectory231

Figure 163. Mobility Detect Vehicle Desired Trajectory ..231

Figure 164. Mobility Detect Vegetation Desired Trajectory232

Figure 165. Mobility Detect Prime Power Health Desired Trajectory........................232

Figure 166. Mobility Detect Road Network Desired Trajectory.................................233

 xviii

Figure 167. Mobility Energize PTO Desired Trajectory ...233

Figure 168. Mobility “Move To” Desired Trajectory ...234

Figure 169. Mobility Performer Logic Objects ...235

Figure 170. Mobility Context Logical Objects ...236

Figure 171. Mobility Context Road Network Logical Objects236

Figure 172. Mobility Context Tactical Control Measures Logical Object237

Figure 173. Mobility Agent Interactions ...237

Figure 174. Mobility DA and Sensor Interactions ..238

Figure 175. Mobility ICA and Controller Interactions..238

Figure 176. Mobility Task Agent Internal Composition ...239

Figure 177. Mobility Cargo DA Internal Composition ...240

Figure 178. Mobility Fuel Level DA Internal Composition240

Figure 179. Mobility Ground Guide DA Internal Composition241

Figure 180. Mobility Lead Vehicle DA internal Composition241

Figure 181. Mobility Motion DA Internal Composition ...242

Figure 182. Mobility Obstacle DA Internal Composition ...242

Figure 183. Mobility Primer Power Health DA Internal Composition243

Figure 184. Mobility Road Network DA Internal Composition243

Figure 185. Mobility ICA Internal Composition...244

Figure 186. Mobility Task Agent Behavior ..245

Figure 187. SC2A Provide Autonomics Task ...246

Figure 188. SC2A Mission Load Set Desired Trajectory ...246

Figure 189. SC2A Detect Mission and Detect Mission Data Content Desired
Trajectories ..247

 xix

Figure 190. SC2A Computation & Signal Power Up and Data Load Desired
Trajectories ..247

Figure 191. SC2A Mission Log Desired Trajectories ...248

Figure 192. SC2A Play Mission Log Desired Trajectory ...248

Figure 193. SC2A Performer Logical Objects ..249

Figure 194. SC2A Context Logical Objects ..249

Figure 195. SC2A Agent and Mission Agent/Convoy Commander Interactions250

Figure 196. SC2A Detection Agent and Sensor Interactions250

Figure 197. SC2A Intelligent Control and “Controller” Interactions251

Figure 198. SC2A Task Agent Internal Composition ...252

Figure 199. SC2A Mission DA Internal Composition ..252

Figure 200. SC2A Mission Data Content DA Internal Composition253

Figure 201. SC2A Event DA Internal Composition..253

Figure 202. SC2A Intelligent Control Agent Internal Composition254

Figure 203. SC2A Task Agent Behavior...254

Figure 204. SC2A Mission DA Behavior ...255

Figure 205. SC2A Mission Data Content DA Behavior ...255

Figure 206. SC2A Event DA Behavior ...255

Figure 207. SC2A Intelligent Control Agent Behavior ...256

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

LIST OF TABLES

Table 1. Concept Design Methods and Considerations ...22

Table 2. Achieve and Maintain Goal Measures ...83

Table 3. Software Object and ALO Comparison ...95

Table 4. MIGVS Agents, Logic and Human Positions ..127

Table 5. Validation Square Criteria with Dissertation Research Evidence187

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 xxiii

LIST OF ACRONYMS AND ABBREVIATIONS

3D CAD three-dimensional computer aided design
4D/RCS four-dimensional real-time control system
ALO agent logical object
ADL architecture description language
BG behavior generator
BDD block definition diagram
C4ISR command, control, communications, computers, intelligence,

surveillance, and reconnaissance
CPS cyber-physical system
DM2 data metamodel
DOD Department of Defense
IB interface block
IBD internal block diagram
IoT Internet of things
EBOM engineering bill of materials
ICA intelligent control agent
JCIDS Joint Capabilities Integration Development System (JCIDS)
MA mission agent
MBSA model-based system architecture
MCPS mobile cyber-physical system
METT TC mission, enemy, terrain and weather, troops and support available,

time available, and civil considerations
MIGVS military intelligent ground vehicle system
MoC model of computation
MOE measure of effectiveness
MOP measure of performance
OOAD object-oriented analysis and design
PLS Palletized Loading System
I/RSTA/EW intelligence, reconnaissance, surveillance, target acquisition &

electronic warfare

 xxiv

QA quality attributes
SCRM system context reference model
SE systems engineering
SOA service-oriented architecture
SP sensor processor
SysML System Modeling Language
WM world model
WSM world state model

xxv

EXECUTIVE SUMMARY

Concept design is a critical stage of systems engineering. A key objective of

concept design is to model the system behavior independent of any particular physical

solution, i.e., distinguish what a system needs to do from its method of doing. This allows

alternative physical solutions to be assessed against how well each meets the intended

behavior, usually within a trade space framework. This solution independent behavior

modeling is referred to here as initial or logical concept design. The final concept design

is the integration of the logical concept design with the selected physical concept and is

used to support or govern detailed design and product development.

Each type of system, sub-type with specialized features, can have both common

and unique behavior logic relative to each other. System types include weapon,

command and control, business, enterprise, intelligent, information, autonomous, etc.

Descriptive modeling techniques for logical concept design have emerged through

practice and tend to support or favor certain system types over others. For example,

functional-based design using Functional Flow Block Diagrams (FFBDs) emerged

in support of mostly analog control of mechanical components in defense

related applications, Business Process Modeling Notation (BPMN) in support of

information management for business information systems, etc. FFBDs were

augmented with data modeling techniques, such as data flow diagrams, as mechanical

elements increasingly came under digital or computational control.

Cyber-physical systems (CPS) has recently emerged as a system type and can be

defined as a system with computational control of physical processes (Lee and Seshia

2017), and are focused on the interactions or “the intersection of the cyber and the

physical.” Weapon systems have been evolving toward CPS for some time. As a mobile

CPS (MCPS) they present an additional challenge or feature of computational control of

physical processes that interact with a dynamic external environment or context. MCPS

can be further typed as a military intelligent ground vehicle system (MIGVS) with

specific additional features: a relatively complex context, synchronized execution within

a command and control hierarchy, and goal directed context aware intelligence. These

 xxvi

additional features result in multiple forms of behavior that must be accounted for in the

logical concept design.

The problem is current modeling practice for logical concept design lacks the

necessary techniques to model all forms of MCPS and MIGVS behavior, such as cyber-

physical, operational information management, and goal-directed intelligent. Without

sufficient and relatively equal capture of all forms of behavior, the final concept design is

likely to be sub-optimized along one or more of them. This research contributes an

architecture modeling approach that integrates all forms of behavior into a single system

descriptive model that is solution independent yet directly supports physical component

selection and alternative system assemblies. The “component” selection and assembly

alternatives enabled include the realization of intelligent behavior by human operator(s)

in lieu of or in conjunction with machine computation, control and sensing.

The modeling approach is based on an overarching architecture concept data

metamodel (DM2) as shown in Figure 1. This concept DM2 provides the overarching

focus and framework for the supporting foundational terms and concepts. A MIGVS has

a computational control logical hierarchy built on a base CPS layer, the latter is a

required enabler for system intelligence. The logical hierarchy, like social hierarchies, are

identified not by spatial proximity but by interaction (Simon 1962), in this case logical

interaction. These interactions react and drive behavior in the form of world state change,

both the system and the context. Key foundational concepts are:

(1) Performer and Context Objects—as indicated, the world from the system
perspective is composed of these objects. They have attributes that
determine their state and are abstractions of some underlying physical
reality. The system performer objects react to events and attempt to
create effects in the context.

(2) Goal-Based Trajectories are a desired or commanded path through a
given world state space. Missions can be organized into a set of tasks
which in turn can be organized into an ordered set of these desired
trajectories. Mission orders or plans can be structured and stored as a set
of successive world states with specific state and time goal measures.

(3) Agent Logical Object (ALO) is a system performer object based on a
granular intelligent or human operator role. Each ALO stores an

 xxvii

assigned mission of goal-based trajectories and interacts with other
ALOs via command and percepts. ALOs initiate behavior based on their
world belief state relative to their goal state. The ALOs together
comprise an intelligent logical control hierarchy above the base CPS
layer.

(4) Horizontal Interactions—Interactions in a computational hierarchy can
be distinguished between horizontal based on like data use at equivalent
hierarchical levels, and vertical based on transforming the data (Shames
and Sarrel. 2015) for use between hierarchical levels. The primary focus
is horizontal interactions between hierarchically arranged ALOs. This
hierarchy sub-divides the application level of computational hierarchy.

Figure 1. MCPS Concept Data Metamodel

The foundational concepts are modeled using the System Modeling Language

(SysML). The system modeled concepts were used to support the generation of a case

study system model also in SysML. The case study was based on a design reference

mission of convoy following and design reference system of a Palletized Loading System

(PLS). The system model consists of a set of performer objects based on an abstracted

subset of the PLS physical hardware capabilities as well as a subset of two-person crew

capabilities.

 xxviii

The system model was examined against the research questions. The system

model generally is technologically independent, including a set of ALOs and sensors that

could be realized by human or machine. All required forms of behavior are captured and

sufficiently described. Operational and system behavior are integrated. Most of what

could classically be described as operational behavior is incorporated into ALO behavior,

mission assigned desired trajectories that they operate upon, and the interactions of

ALOs. Most of what could classically be described as system behavior is within the CPS

base layer. The system model is structured into a set of performer objects which enable

direct link to component solutions, but have a level of granularity that would allow those

component solutions to be aggregated into a variety of assembly approaches.

The MCPS concept DM2 and the supporting foundational concepts provide the

necessary perspective and supporting framework to support generation of a system model

that captures all the necessary forms of behavior. It also does so in a way that could

facilitate physical component selection and trade space analysis. The ALO concept

arranged in a hierarchy provides sufficient fidelity in terms of interactions and goal state

yet retains it physical solution independence. A discovered benefit of this approach is the

ability to conceptualize three types of knowledge or data (Evans et al. 2002) parametric,

symbolic, and complex data structures such as arrays, lists, maps, images, etc. This data

conceptualization would be an important part of the overall MIGVS conceptualization.

LIST OF REFERENCES

Evans, John M., Elena R. Messina, James S. Albus, and Craig I. Schlenoff. 2002.
“Knowledge Engineering for Real Time Intelligent Control,” Proceedings of the
International Workshop on Intelligent Knowledge Management Techniques (I—
KOMAT 2002), Crema, Italy, Sept. 16–18

Lee, Edward A., and Sanjit A. Seshia. 2017. Introduction to Embedded Systems, A Cyber-
Physical System Approach, Second Edition. Cambridge, MA: MIT Press.

Shames, Peter M., and Marc A. Sarrel. 2015. “A Modeling Pattern for Layered System
Interfaces,” 25th Annual INCOSE International Symposium (IS2015), Seattle,
WA. July 13–16.

Simon, Herbert A. 1962. “The Architecture of Complexity,” Proceedings of the
American Philosophical Society, 106: 467–82.

 xxix

ACKNOWLEDGMENTS

I would like to acknowledge Dr. James P. Richardson, DCS Corporation, for his

participation and the generation of the mobility portion of the case study model and

diagrams. This was accompanied by discussions, in particular as regards various SysML

modeling approaches, goal specification, state space representation, constraints,

mathematical/difference functions, and complex data structures. These discussions

provided valuable feedback, perspective, and insight that I used to refine the related

foundational concepts.

 xxx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

This research contributes to the logical concept design phase of systems

engineering by integrating multiple forms of logical behavior into a single descriptive

system model. The forms of logical behavior include operational behavior (a kind of

business behavior), intelligent behavior that is goal-directed and context-aware, and the

control part of cyber-physical behavior. The system model is solution independent,

makes no assumptions about any human operators, and provides a holistic capture of the

logical problem domain in a way that can directly support technology component

allocation and system trade space analysis.

The system model is based on an underlying concept data metamodel (DM2) with

foundational modeling concepts that support explicit modeling of the logic in terms of

system objects, state behavior and interactions. Both the goals and the context associated

with intelligent behavior can be captured in terms of objects and state. The approach of

modeling system objects, their state, and their interactions, can be distinguished from a

more typical systems engineering approach based on task or functional decomposition

and interaction that is then mapped into some higher level system physical solution. The

concepts are defined for the domain of mobile cyber-physical system (MCPS) in general

and are applied to a more specific sub-domain, military intelligent ground vehicle system

(MIGVS) in a case study.

A. BACKGROUND AND MOTIVATION

Cyber-physical systems (CPS) are defined by the National Science Foundation

(NSF) as “smart networked systems with embedded sensors, processors, and actuators

that are designed to sense and interact with the physical world” as well as human users

(National Science Foundation [NSF] 2015). In CPS, the behavior emerging from the

interaction between the “cyber” and “physical” elements of the system is critical.

Physical elements are machines that interact directly with the physical world, and cyber

elements are the computation, control and networks of the system. CPS can be further

distinguished as having multiple types or models of computation. These in turn exhibit

 2

what can be described as different types of associated behavior logic, to be defined

here as cyber behavior or cyber controlled capability. The CPS behavior rests upon

and/or is integrated with the physical behavior or physically driven capability. The cyber

driven and physical driven capability are together realized by a set of technologies

(i.e., computers, networks, software and machines). For clarity, the term component will

be used when discussing the physical realization of technology for either cyber or

physical capability.

Figure 1 shows the technology challenges that apply to defense systems (National

Science Foundation [NSF] 2015). Weapon systems have a set of computational types,

a set of machines that interact with the physical world, and an added set of

physical constraints due to their mobility and other factors. This research focuses on

MIGVS, a military ground system with autonomy levels, machine automation, and/or

data automation significant enough to improve the mission effectiveness to crew size

ratio relative to a comparable, non-intelligent system. This makes a reduced crew solution

feasible or conversely can improve mission effectiveness of a vehicle with the same

size crew.

Figure 1. NSF Cyber-Physical System Technology Challenges. Source: NSF (2015).

 3

A MCPS is likely to include four types of behavior logic (Douglass. 2004. 140–

144, leveraged for first three definitions):

1. Simple functional behavior that transforms an input into an output without

the use of memory or knowledge of previous input. Examples include direct flows of

combinatory logic and mathematical functions, including control system transfer

functions.

2. State-based discrete-event behavior that transforms discrete input in

combination with previous input captured as state information to a discrete output. This is

the behavior logic most closely associated with data or information processing that

transforms information from one form to another, often in in response to a user input.

3. Continuous behavior that transforms continuous time input to a

continuous time output where any previous input dependencies or state are also

continuous. Examples include physical processes and “algorithmic objects” that

transform a “stream of data” (Douglass 2004, 143–144).

4. Intelligent behavior exhibited by an agent or entity that is goal-directed

(Russell and Norvig 2003. 44–50) and that can act on knowledge and perhaps

understanding (Ackoff 1989). An intelligent agent, man or machine, is context-aware,

meaning it can perceive and understand its environment and bring about an effect in that

environment. For an MCPS, if one considers the crew or user as part of the system during

its operation, then intelligent behavior can be realized as fully autonomous or as human-

machine interaction. Intelligent behavior includes mission and task-oriented behavior

driven by discrete events and that form the top level of an application control hierarchy.

Intelligent behavior also includes “intelligent detection and control behavior” that sense

or act in a dynamic environment and can be continuous time based. In a CPS, intelligent

behavior represents a distinct type of computation.

CPS have also been described as “integrations of computation with physical

processes” (Lee 2008). Figure 2 shows a MCPS viewed as the integration of “physical

behavior” or processes and “cyber behavior” or computation. A set of physical

mechanisms realize physical behavior and direct energy and/or transfer material to, from,

 4

and within the system to achieve an effect in the external environment, or maintain some

relative state in a dynamic environment. The mobility aspect of these systems increases

the state properties of interest because even static properties in the external environment

can now have a state relative to a moving system. A set of physical components realize

cyber behavior and generate or transform signals into information to, from, and within

the system and then perform computations on that information. The cyber components

realize the four types of behavior logic as required to effectively control the physical

mechanisms, manage its own information and data state variables, and make decisions

about behavior. In the model, a human is a cyber component that acts through the

physical mechanisms of the system and is considered part of the system or contained

within the system boundary.

Figure 2. General MCPS Model

The challenge of realizing a MCPS with the full range of behavior logic described

above is not only to sufficiently capture and integrate with the physical mechanisms, but

do so within a larger systems engineering approach that can inform decisions about the

entire systems architecture. The systems engineering includes selection of the

components and mechanisms, determination of the overall internal/external structure and

boundary, and achieving necessary performance within constraints. To accomplish this,

the needed behavior logic must be captured solution independent and in a way that

facilitates the assessment of potential solutions. What follows is a background as to how

 5

these issues impact an MCPS architecture concept design. This will be viewed through

the lens of the MIGVS domain.

1. An Historical Perspective on System Behavior Logic

Classical systems engineering methods for analyzing behavior logic, such as

functional analysis and functional flow block diagrams (Blanchard and Fabrycky 2011,

86–93), emerged when systems were still largely mechanical and physical. The behavior

logic is modeled as functions to transform inputs to outputs within a mission thread.

Functions and functional flows are readily understood and can be reasoned about by

multi-disciplinary teams, to include non-technical members. They are also inherently

solution independent. The control by the functional flows represented could be realized

by relatively simple devices such as servos and regulators directly linked to the physical

mechanisms or machines.

The initial application of cyber technologies were first used to achieve advances

in machine control, precision, and accuracy. This application resulted in improvements to

thread performance of physical driven behaviors and fit within classical functional

analysis, though functional flow analysis now had a greater emphasis on feedback control

logic. However, as systems added more discrete software, automation, and/or autonomy

to augment human operator capability, the resultant intelligent behavior has either an a

priori allocation to human or machine execution, or presumes that this allocation can be

addressed in software development after the hardware is rationalized and major trade

space decisions accomplished. If the a priori allocation was not sufficiently analyzed or

sufficiently captured, it cannot be adequately considered in the subsequent system

engineering effort. In particular, the events and effects relative to any specified functional

inputs and outputs will not be systematically and comprehensively linked.

The application of general purpose computing and associated software to weapons

systems and other defense and non-defense systems, led to a common view of behavior

logic between systems and software engineering under a formal method known as

structured analysis and design technique (SADT) (Ross 1977). SADT was codified for

the federal government under the Integrated (I) Computer Aided Manufacturing

 6

Definition (DEF) modeling standards, particularly IDEF0 and IDEF1X. The latter being a

data modeling standard considered necessary for software.

SADT or “algorithmic decomposition” (Booch et al. 2007) when applied to large

scale discrete event software has been associated with issues of scalability, modularity,

and a lack of intermediate forms (Booch et al. 2007). The behavior must be mapped to

component implementations which often occur at higher level assemblies, and then

further decomposed. A working model of behavior often does not occur until late in the

development process and often subsequently to implementation decisions. If

requirements change or the implementation is not decided correctly, it is difficult to

isolate the change and consequently many different parts of the implementation can be

impacted.

Object-oriented analysis and design (OOAD) methods emerged for large scale

discrete software development efforts (Fichman and Kemerer 1992). The applications or

domain logic is organized around classes/objects that encapsulate behavior and state and

that interact to realize the system’s behavior. These classes/objects help organize very

complex logic in a systematic way, enable analysis of the system at a relatively high level

of abstraction, enable modification and incremental increases in fidelity, and enable reuse

of the objects to the extent that the domain logic is similar. It should be noted that SADT

and OOAD are orthogonal methods to accomplish the same objective and cannot be used

simultaneously to construct a system (Booch et al. 2007). An overarching OOAD

“systems” methodology is exemplified by the practice surrounding the Unified Modeling

Language (UML). UML evolved from OOAD via the Rational Unified Process (Rational

1998) combining concepts from James Rumbaugh, Grady Booch, and Ivar Jacobson. The

architecture practice evolved from an original “4+1” view model concept (Krutchen

1995). As the practice has evolved, some of the names and meanings of these views has

evolved as well. They are shown in Figure 3, and are defined in a way that better relates

to an MIGVS context, but remain similar to their original form. The objects model “real

world” entities in terms of classes that comprise the system. Secondly, the logic at the

leaf level of classes and object can reflect relatively low levels of software code or an

implementation and thus a direct instantiation of a software “physical” component

 7

solution. Finally, software objects aggregate up in higher level software assemblies like

programs, software configuration items, and executables. These elements constitute the

“physical embodiment” of the software that are deployed to the hardware in the

Deployment View. The one view in the “4+1” view model are use cases. Use cases can

be described as a “goal-oriented set of interactions between external actors and the

system under consideration” (Malan and Bredemeyer 2001). A use case provides a

mechanism to determine critical functions as the system interacts with the external

context, at least external “users.” Use cases can be arranged in a hierarchy at various

levels of detail or abstraction (Topper and Horner 2013).

Figure 3. An OOAD 4+1 Architecture Model View.
Adapted from No Magic (2015).

As mentioned previously, OOAD has found significant application for large

discrete-event software systems. From an MIGVS standpoint, consideration must be

given to how the discrete event-based techniques of OOAD apply to its other forms of

behavior logic and their subsequent capture in the system concept design. Adaptations

can be addressed for simple functional and continuous real time behavior to support

software design (Douglas 2004). However, within a systems engineering framework, the

behavior and software are first rationalized as part of a larger system level abstraction

with all forms of behavior logic as well as non-computational hardware and other system

constraints to be considered. There is not equivalent consideration given to analyzing the

 8

physical mechanical hardware nor its interdependency with the software as part of the

larger system concept design. The basic premise of a use case reflects a bias toward

transaction-based interfaces with users rather than effects-based external impacts of

physical-mechanical hardware. OOAD techniques must rely on some other systems

engineering activity to sort this out and decided that software of a certain capability is

required as part of a larger system solution. MCPS need not only understand critical

behavior in the context of goals, but must understand and reason about the goals

themselves as well as any associated state space.

Information systems engineering and integration eventually emerged as a

relatively separate discipline to design and build business applications. Areas such as

information management, data base design, service-oriented architecture (SOA) and

enterprise architecture, brought a new emphasis on business processes and business

organization as a key consideration in the derivation of a system’s behavior logic.

Enterprise architecture in particular can be viewed as “a high level design of the entire

business” (Giachetti 2010), to include the modeling of the business processes and the

interaction with the external environment. In this sense, it represents an initial form of a

kind of intelligent behavior modeling and another type of cyber driven behavior logic.

The highest level of behavior is modeled to include its purpose or goal. The business

processes have a hierarchy similar to functions that can go by different names: activity,

tasks, steps, etc. When needed, the term task will be distinguished by the implied

completion of work and can often be associated with a goal, whereas activity will refer to

the more general abstraction of movement or energy.

The enterprise view of system architecture for military systems is exemplified by

the Department of Defense Architecture Framework (DODAF) Version 2.0.2 (CIO DOD

2010) and is mandated by the Manual for the Operation of the Joint Capabilities

Integration and Development System (JCIDS), 12 February 2015. It takes many concepts

from enterprise architecture and SOA and applies them to the operational behavior of

military systems. It provides unique emphasis on aspects important to CPS concept

design: interoperability, operational behavior threads in response to events, and

identification and integration of operational activities with system functions. As shown in

 9

Figure 4, it also has a concept architecture data metamodel (DM2) that explicitly captures

the architecture concepts so that these concepts can be better understood and reasoned

about.

Figure 4. DODAF Concept Data Meta Model. Source: DOD CIO (n.d).

Though the DODAF is not a methodology, the viewpoints certainly have

methodological implications as does its original establishment and evolution as an

enterprise architecture. DODAF fundamentally supports a structured method, albeit a

more complex one. Operational tasks activities are decomposed to system functions that

can be further decomposed. The DM2 has supporting viewpoints that account for events

and effects. However, although responding to events is accounted for in the DM2 in

certain viewpoints, delivering effects the context is not formally modeled beyond

“friendly” systems or organizations and interoperability concerns. Though there is a

Services Viewpoint that includes measures of effectiveness (MOEs), there is no other

viewpoint that would include depicting any context MOE that is not a resource. A goal is

viewed as a capability which in turn is the desired state of a resource. In that sense, the

context is more limiting than that of use cases. The interoperability and service focus and

enterprise background also suggest a human transactional bias and world effects are not

addressed. Finally, though it is stated that everything has states, it would seem that the

 10

state of an activity means something different than the state of physical thing or software

object.

Enterprise systems have an underlying information-based system model (i.e.,

users in a business office environment interacting via work stations connected by a

network and supported by servers). Military command and control looks less like a

standalone information system as the unit under consideration gets smaller and smaller

and more directly interacts with a physical dynamic environment. Though not real time,

timing is a factor in the behavior of these small unit C4ISR systems which makes large

scale data base approaches less feasible. Specialized performance and constraints to

synchronize and coordinate effects must be considered. However, there are some useful

concepts that can be leveraged into an MIGVS architecture. The concept of modeling

operational or business behavior logic as part of the overall architecture is particularly

critical, especially if that behavior is to be realized whole or in part by the system. This is

the case for the task-oriented part of intelligent behavior, even if it is only supporting

information processing within that behavior. The concept of a node as an abstraction of a

computational element within the architecture could be well utilized within a systems

engineering framework, though its definition of “where information is processed” would

have to be expanded to include managing work. The concept of mapping operational

activities to system functions is a realization that there is a complex logical hierarchy that

executes within a MIGVS.

Military systems perform or support tasks with a goal or end state to be achieve

by work. This is true even for a C4ISR, particularly for a forward unit that is using

interoperability and synchronization to achieve a specific mission objective or purpose.

Task and mission behavior logic has always been critically important to a weapon

system, particularly when we consider the human operator as a cyber component in the

execution of that logic. In the sense of making the human an element of the system, a

ground vehicle weapon system has always been a MIGVS. Until the introduction of on-

board digital and software components to process information, the human interaction

with the system was typically treated as a separate concern and mostly a design activity

distinct from the system architecture definition. This information processing can be

 11

utilized not only to aid the execution of unit level command and control, but can also be

utilized to aid realization of system mission and task execution. The mission and task

logic form a hierarchy of logic when integrated with machine behavior can accomplish

work or goals beyond information processing. It is the realization of cyber-physical

behavior.

A good example of realizing a system cyber-physical behavior is the hunter-killer

capability (NGAUS 2014) within the Abrams Main Battle Tank. The hunter-killer

capability was realized with the addition of the following information acquisition and

processing components: an independent target acquisition suite for the commander, a

commander’s display and supporting processor, a gunner’s display and supporting

processor, a network to exchange information between commander and gunner, and

software. These components in concert with the commander and gunner achieve a higher

rate of target acquisition and kill under certain offensive and defensive operational

scenarios. The increase in effectiveness relies on integration of the weapon and mobility

physical-mechanical components as well as low-level physical behaviors such as move

and shoot, it is achieved without any improvements to those capabilities. Furthermore, at

a high level of abstraction, the commander and gunner do what they have always done in

terms of coordinating target acquisition and firing priorities. The addition of information

and processing components improved the coordination or control between the

commander and gunner beyond direct human interaction. An increase to a measure of

effectiveness (MOE) was achieved with the additional cyber capability as an intermediate

level of control between the existing higher level cyber-capability (i.e., commander and

gunner), and the lower level cyber-capability (i.e., direct control of the physical-

mechanical components).

Any MIGVS has at least the same hierarchy of cyber capability just described,

more if a given human operator is abstracted into a set of objects based on roles. Roles

include managing the mission overall, performing primary tasks such as driving, and

performing support tasks such as obstacle or threat detection. Each role-based object has

associated MOEs and are supported by system components with measures of

performance (MOPs). Mission effectiveness is supported by task effectiveness, which in

 12

turn is supported by system performance and then technological performance (Spero et

al. 2014). There is a hierarchy of cyber control with a hierarchy of MOEs/MOPs.

Measures of mission effectiveness can be linked through the hierarchy to cyber

components, such as the aforementioned information and processing components.

(Badger et al. 2013).

A given MIGVS needs to achieve a certain operational effectiveness whether it

has a full crew complement, full autonomy or something in between. The crew can be

considered part of the “product set,” and crew size, including zero, as part of the trade

space in system concept design. Operational tasks need to be identified and allocated to

the crew and/or an autonomous technology solution. Various combinations of these

“products” need to be assessed for their impact on cost and operational effectiveness.

These products must also be combined with more “standard” software products utilized

for information management and other system logic and also assessed as part of the trade

space. This requires a view into the product set that can be directly linked to the behavior

and attributes and not biased toward a physical assembly and containment solution, to

include a human operator as a particular type of physical assembly

It is not straightforward to assess the operational effectiveness with MOEs

indistinguishable from crew versus technology solutions. The U.S. Army has much

doctrine, task lists, field manuals, and unit training guides that describe what tasks the

crew are to accomplish. Quantitative measures relative to the task execution along with

their quantitative contribution to overall mission effectiveness are not as well specified.

Mission and task MOEs are scenario dependent with variables of mission, enemy, terrain

and weather, troops and support available, time available and civil considerations (METT

TC) (ADRP 3–0, 2012). METT TC variables have a probability of occurrence with a

certain degree of concurrency relative to each other for any given scenario. Event profiles

(i.e., the probability and frequency of event occurrence), are not typically available and

must be estimated to determine the system response, to include the crew, as well as

measure its effectiveness. The system response in turn has an internal hierarchy of

response dependencies through the product set that contributes to task execution.

 13

Agent-related methods is a way to model intelligent behavior. The increasing

emphasis on autonomous systems are likely to lead to widespread embedded agent

application in the near future. Agent approaches are used currently in various simulation

tools to support MIGVS analysis, but most simulation-based approaches are focused on

the interaction of a large number of simple agents for domains that fit a more theoretical

definition of a complex system. If one considers the “as is” physical embodiment of the

agents as crew members that interact as part of the system, a MIGVS has fewer but

higher level fidelity agents. The focus here will be on agent methods for “systems” that

more closely resemble these MIGVS agents. Like most of the previous behavior logic

review, these agent methods find their lineage in software. It is worth noting here that a

simulation of a system is essentially a simulation of the behavior of an autonomous

vehicle system, except for perhaps scope and fidelity. If the behavior logic was

“perfectly” or “fully” simulated, then all the necessary behavior logic to realize an

autonomous system would be defined.

Agent-oriented software engineering (AoSE) has only recently emerged from a

“nascent field of research” to some areas of application, such as industrial agents and

other multi-agent systems (Tveit 2001). Most AoSE techniques recognize similarity and

distinction between objects in OOAD and agents in agent-oriented analysis and design

(AOAD). Some methodologies like Gaia (Woodbridge et al. 2000) require a more

significant departure between how agents are defined and modeled versus objects. Other

methodologies, such as Multiagent Systems Engineering (MaSE) (Deloach et al. 2001),

view agents in terms of extensions or specializations of objects. Supporting techniques

like agent UML (AUML) (Odell et al. 2000) see leveraging object techniques as “risk

reduction” for the relatively new agent technology.

The observable behavior of an MIGVS as a black box could be considered to be

the same whether it is fully crewed or fully autonomous. As discussed previously, the

crew itself can be modeled as agents where each crew member is decomposed into

multiple agents based on role decomposition. Multi-agents combine within and between

systems to form larger hierarchical unit that performs task-oriented operations as

considered in the link of agent development to organization theory (Argente et al. 2006).

 14

As such, logically linking agents and objects holds the promise of linking military units

through the MIGVS to relatively granular role-based agents that interact with non-agents

objects and entities. This should enable the integration of all forms of behavior logic from

high level tasks to physical interactions with the environment, at least at some level of

abstraction.

2. Model-Based System Concept Design

System concept design has been described as the “most important phase” in

system development and one that translates a problem into a need and then a preferred

solution (Blanchard and Fabrycky 2011, 56). Concept design includes a solution

independent behavior design that meet operational needs as well as the physical concept

of the preferred solution. Solution independent part of concept design must be done in a

way that can be translated into more detailed behavior and physical design. Classically,

concept design is done by analyzing the system behavior using FFBDs and then mapping

or allocating portions of the behavior to some high level representation of the system

hardware. Increasingly, the concept design phase is realized within a model based

systems engineering (MBSE) is increasingly used to define a descriptive model (NDIA

2011) to support concept development (INCOSE 2007). Concept design supports

embodiment design in a product design and development process and includes 3D CAD

modeling (Arunachalam, Prakash, and Rajesh 2014). Mass properties and physical

mechanical behavior can be conceptualized in a 3D CAD language, but not higher levels

of behavior. MIGVS concept design requires a 3D CAD concept model integrated with

ability to model higher levels of behavior.

SysML, in particular when coupled with the Object Oriented Systems

Engineering Methodology (OOSEM) (OMG MBSE Wiki 2011), can be thought to

provide some support to SADT and OOAD methods. Any structural abstraction can

be modeled as a block extending the notion of a class beyond software. SysML also

supports use case modeling to derive critical functions in a goal-oriented context, direct

linkage and traceability to requirements, and behavior modeling techniques found in

UML (i.e., activity, sequence, and state machines). SysML also has concepts for both

 15

functional and logical architecture modeling distinct from a physical implementation.

However, OOSEM utilizing SysML in practice generally follows a SADT approach for

logical analysis with the addition of use cases and a facility for mapping to logical

objects. Functional flows are modeled in activity diagram and data flows in sequence

diagrams. It is seeks to combine structured and object-oriented analysis (i.e., combine

two orthogonal techniques to simultaneously construct the same system) (Booch et al.

2007, 22). OOSEM seems to be closer to an object oriented technique if the logic is

relatively simple (e.g., a logical hierarchy of one or two levels). When the logic is more

complex, the bias is toward a complex functional architecture with one level of

abstraction object logic above implementation as a facility for mapping (Hart 2015). Like

the use of FFBDs, the tendency also is to focus on the control of physical mechanical

behavior and assume higher level logic, if needed, can be deferred to a later stage

software design.

Concept design of a ground vehicle system, in general, proceeds much like

any weapon system concept design within a Department of Defense (DOD) acquisition

and JCIDS based development. An initial set of desired operational capabilities is

supported by trade space exploration, technology development, continued operational

analysis, system requirements development, system analysis, and perhaps some system

demonstrations. Typically, the ground vehicle community generates one or more physical

concept designs in CAD models as an aid to these activities. The output is a selected

feasible system concept, a finalized operational capability document, a system

performance specification, a system cost estimate, and an acquisition approach. The

concept design then matures toward a preliminary design or the full embodiment of the

system architecture and details the interfaces between products. However, almost by

definition, the major trades that determine the system architecture and identify the major

products and technologies are usually completed with the concept design.

The cost estimate usually conforms to a standard surface vehicle work breakdown

structure (WBS) (MIL-STD-881C Appendix G 2011). A portion of the WBS, shown in

Figure 5, represents a product view of the system. It is meant to form a common,

repeatable, and relatively granular domain structural logic of the systems products or

 16

technology. The product structure is instantiate with specific technology solutions. For

instance, Suspension/Steering would include considerations of track versus wheels;

active, semi-active or standard suspension; braking systems, etc. Similar considerations

can be done for other product groupings such as Survivability, Communications, Fire

Control, etc. These technologies are then “integrated” into subsystems, sub-assemblies,

major assemblies, etc., to form a system concept to meets its performance requirements

and constraints. The system concept evolves based on performance and constraint

analysis until the most feasible concept is determined. The CAD model is used to

generate a high-level engineering bill of materials (EBOM) used for cost estimating. The

most feasible concept is used to build an acquisition program budget.

Figure 5. Ground Vehicle System “Product” WBS.
Source: MIL-STD-881C Appendix G (2010).

 17

Like many other systems engineering techniques, the product view of a WBS first

emerged when systems were predominantly composed of physical mechanisms and some

associated control system technology. With the increasing embedded application of

digital/information technology or higher level cyber components, the following problems

begin to arise:

a. The granularity of the physical mechanisms as compared to the granularity

of cyber components are not equivalent, except for direct control that can be associated

with the physical mechanism (e.g., fire control). The higher level cyber products are

allocated to relatively large “buckets,” such as vehicle electronics and Primary Vehicle

Software #1. Software #1 provides little insight into what that software does, how it

would impact a trade space, and is often left to large design efforts. It is roughly

equivalent to describing the physical mechanisms as Physical Assembly #1, Physical

Assembly #2, etc.

b. Products previously considered outside the system boundary, such as

certain training, maintenance, and test components, may now be included wholly within

the system boundary or split between on-board and off-board capability. If included in

the system, the connection to any related off-board cost is lost. It also tends to skew cost

comparisons between primary vehicle systems that have this capability embedded versus

those that do not. For example, a system may have embedded training and/or embedded

diagnostics/prognostics that wholly or at least in part replace off-board training and

maintenance equipment. Presumably off-board costs would go down and primary vehicle

costs would go up. An effective trade space analysis would have to account for the

capability and cost of the embedded components together with the off-board

“components” and determine the best combination. When compared to other primary

vehicles costs and capabilities, it would not appear to be more expensive with little

insight into the higher cost, yet it might in fact improve training and maintenance and

therefore the readiness of the system.

c. Much of the higher level cyber products are developed separately from the

system, provided as government furnished equipment (GFE), and not included in the

WBS. The GFE often overlaps with WBS elements only generally described as

 18

electronics and software. The overlap results in a more costly and sub-optimized concept

design in terms of integration constraints which are difficult to identify let alone rectify.

Attempts by the system developer to eliminate duplication and improve GFE integration

usually get reflected as a cost to the system. The developer’s system appears more costly

when compared to a similar system with sub-optimized GFE integration.

d. Task-oriented behavior allocated to cyber components are identified as

system costs. Task-oriented behavior allocated to the soldier are not identified as system

cost. A system with cyber components with equivalent or better operational effectiveness

is at a cost disadvantage as long as the cost of the soldier is zero. However, the cost of the

solider in terms of housing, training, etc., is not zero.

All of the issues above can be addressed or at least mitigated, if the cyber

components or objects can be structured with similar granularity as the physical-

mechanical components. Role-based agent objects like mission agent, driving agent and

obstacle detection agent provide object granularity into the system’s logic. These objects

can then be combined with a compatible set of physical objects similar to the existing set

in 881C. The crew can then be considered part of the physical architecture solution and

used for certain cost and performance comparisons.

Programs need the ability to consider the crew relative to the system product set

or to abstract the crew into a “technology neutral” product set. Agents can be utilized to

capture the crew behavior to a fairly granular degree appropriate for concept design while

remaining technology neutral; that is, the agents can be allocated back to the crew with

associate training standards, realized by cyber technology, or both. Agent objects

integrated with non-agent system objects determine the full system response. Soldier

workload and computational resource loading can be assessed with the allocation of

agents and objects to technology. The right side of Figure 6 shows an integrated

operational and system model for behavior formed when the technology neutral object

model is extended with technology selection. The left side of Figure 6 shows an

information translation loss from operational model to operational requirements narrative

to system requirements narrative to system model. Information translation loss can be

 19

avoided if the requirements are integrated with and extractable from an integrated

operational and system behavior model.

The integrated operational and system behavior model relates primarily to task

and functional requirements. Task requirements are often unspecified because they are

presumed to be executed by an operator. Other requirements may be better expressed in

other types of models or as narrative. System mass property requirements are best

captured in a CAD model. There may be functional or constraint requirements that reflect

standard practice and/or lessons learned that would not be revealed as a decomposition of

an operational behavior. Also, narrative requirements will likely always be needed for

non-technical stakeholders, such as program managers and contract officials. Therefore,

an integrated and operational and system behavior model, like other operational and

system models, are best viewed as a companion to a narrative set of requirements.

 a. b.

Figure 6. Integration of Operational and System Models

Logical concept design is a solution-independent model of the problem domain

that describes what the system has to do. Logical concept design is typically associated

with defining a functional architecture (Blanchard and Fabrycky 2011, 93). As Blanchard

and Fabrycky explain, concept design is complete when the system architecture is

defined (i.e., the functional architecture is mapped into a physical architecture supported

 20

by trade-off analysis). Completion of concept design leads to the preliminary design in a

systems engineering development process. Blanchard and Fabrycky acknowledge the

completion of concept design with a concept design review. Concept design completion

would have to occur as part of the system functional review (SFR) in current systems

engineering practice for the DOD (Department of the Navy [DN] 2015).

A logical concept design that integrates operational and system behavior ideally

initiates as part of the earliest formulation of a program (i.e., coincident with or shortly

after operational need definition and early operational analysis). The logical concept

design would mature as needed through early program phases and formal reviews (e.g.,

system requirements review [SRR]). The use of the logical concept design in the

development of the system architecture enables trade-off analysis to address physical

architecture impacts to both the system and operational behavior. The resultant physical

architecture would also include both hardware and software architectures. Greater agility

is therefore enabled from operational need definition through final concept design,

Standard reviews such as SRR and software specification review are still held as needed

to mark firm decision points or baselines and would include a concept design maturity

assessment. Ideally, a more focused concept design review would be held to finalize

concept design as opposed to being a part of SFR. In either case, the preliminary design

phase can proceed as before.

The impact of cyber components and cyber capability can also be revealed

anecdotally. An F-35 pilot, Lieutenant Colonel David Berke (Martin 2014), after agreeing

that the F-35 does not fly any faster, or maneuver more sharply, than other planes, stated

that: “Those are metrics of a bygone era. Those are ways to validate or value an airplane

that just don’t apply anymore…The biggest big deal is the information this airplane

gathers and processes and gives to me as the pilot.” Though there is perhaps an equal risk

in underestimating the value of the system’s mechanical performance to the overall

system behavior, it is certain that a system with several million software lines of code has

a cyber-intensive behavior component that is now interdependent with a tradition weapon

system’s physical-mechanical intensive behavior component. A system concept design

 21

for this type of CPS must be capable of simultaneously modeling both types of

components, their interdependence, and their respective impact on mission effectiveness.

3. Summary

MCPS, particularly when we include the operator, reflect key features of CPS:

cyber and physical intensive, cyber and physical interdependence of behavior and

attributes, and multiple classes of computation. The behavior or the anticipated behavior

of the embedded operator(s) in a MIGVS can be extracted out into solution independent

logic objects based on roles. The role-based objects are mission and goal oriented and

arranged in an interdependent hierarchy of logic or cyber behavior.

SE methodologies or implicit methodologies in architecture frameworks or a

system language like SysML, have brought certain advantages and disadvantages to

system concept design, as summarized in Table 1. MIGVS behavior concept design

requires a superset of these features:

(1) Solution Independence

(2) Integrate operational and system behavior

(3) Model intelligent behavior

(4) The ability to directly reason about state

(5) Component objects that can directly translate to component
implementation

(6) Equivalent consideration to human, software, hardware and physical-
mechanical behavior and their component abstractions

(7) Enable component assembly alternatives

 22

Table 1. Concept Design Methods and Considerations

Method Advantages Disadvantages
Structured System
Analysis & Design
(e.g., FFBD)

1. Solution Independent
2. Straightforward reasoning of
functional behavior relative to
inputs and outputs.

1. Not directly translated to
implementation leading to
concerns about modularity and
scalability
2. Imprecise level of
decomposition relative to
component allocation
3. Behavior often not fully
understood until after an
allocation to a set of high level
assemblies
4. No direct reasoning about
state, operational behavior,
event/effects, or intelligence

Software Object-
Oriented Analysis and
Design

1. Can directly reason about state
2. Classes/objects lead to direct
component implementation
facilitating modularity and
scalability
3. Assembly independent
4. Use cases generate critical
functionality relative to the system
context and can be goal oriented.

1. Not a whole system
approach– just software
2. Limitations of use cases:
simple context and no explicit
support for modeling effects,
intelligence, and
concurrency/interdependency

Enterprise Analysis &
Design

1. Explicit meta model for
architecture concepts and
relationships
2. Support business or operational
modeling and associated events
3. Supports direct linkage of
operational activities and system
functions.

1. SSAD approach only more
complex with many of its
disadvantages
2. Human transactional and
interoperability centric versus
goal and effects based
3. No direct support for
modeling context, effects and
intelligence

SysML Based MBSE
Considerations (e.g.,
OOSEM)

1. Concept of a block supports
flexibility of class definitions
beyond what is implemented in
software
2. Provides some facility beyond
SSAD for mapping behavior to
implementation
3. Many SSAD advantages
4. OOAD use case advantages

1. Mix of orthogonal methods:
SSAD and OOAD and has
SSAD disadvantages for
complex logic
2. Bias towards hardware and
low level physical mechanical
behavior with cyber behavior
deferred to later development
3. OOAD use case
disadvantages.

 23

The systems engineer of CPS now requires methods to capture the full range or

heterogeneity of behavior discussed here and its relation to physical aspects of the

system. These methods must address:

(1) Capture of intelligent behavior

(2) Specification of operational tasks not associated with unit command

(3) Task allocation to operator versus machine

(4) Trade off analysis of cyber and physical capability and components

(5) Sufficient logical behavior analysis prior physical architecture decisions

(6) Decomposition and allocation of MOEs/MOPs for behavior

(7) Descriptive methods that inform product development with sufficient
behavior comprehensiveness.

These methods have to be model based given the complexity and multi-disciplinary

nature of CPS and the emergence of model based methods in both systems engineering,

software engineering and product development. Additionally, the behavior logic is better

addressed in models rather than with requirements narrative. These methods will also

need to enable the allocation of cyber behavior models to support design as well as form

a system architecture and decision baseline at a system concept level of abstraction.

B. PROBLEM STATEMENT

MIGVS have levels of CPS behavior logic with features that are not addressed by

current behavior modeling methodologies and approaches. As a result, the system’s

higher level behavior, including intelligent behavior, is not effectively captured and

therefore sub-optimally considered in concept design.

C. RESEARCH SCOPE AND OBJECTIVES

The purpose of this research is to define and demonstrate approaches and

concepts to effectively capture MIGVS behavior logic for concept design. The research

proposed an overarching architecture concept data metamodel (DM2), shown in Figure 7,

that identifies key architecture structural and behavior concepts.

 24

Figure 7. MIGVS Architecture Concept DM2

The key structural and behavioral concepts are as follows:

(1) System Performer Objects

(2) Context Objects

(3) System Connected context objects like payload and operating resources

(4) Missions defined by Goals that reflect a desired trajectory through the
state space

(5) Agent Logical Objects that are a specialized type of performer objects

(6) Behavior as state change driven by interactions between objects

As in software OOAD, objects can be organized and analyzed as class

abstractions. Unlike OOAD, these classes are not abstractions of software code, but are

abstractions of any physical object, that may include software code. The classes are

logical concepts that enable system concept analysis and design. The MIGVS DM2 is

supported by the following archetypical classes: Context, Performer, Agent, Goal,

Payload, and Operating Resource.

These classes can be detailed and decomposed for a given application or domain,

and used to construct a system and context model. Decomposition can be done to the

 25

point of component types, but not dictate a specific solution or technology. Specific

missions and goals can also be decomposed to reflect desired behaviors expressed in

terms of context and/or performer object states. Performer and context objects change

state through object to object interactions, including internal system object interactions

and system to context interactions that represent events and effects. The model once fully

developed would represent the initial concept design. Specific solutions can then be

directly instantiated from the leaf level objects of the initial concept design. Different

alternatives can be considered subject to different constraints and trades conducted and

aggregated into physical assemblies, including “human assemblies,” much like

transitioning from the logical view to the physical view in software OOAD. In this case,

the physical view would result in the final concept design.

The structural and behavior concepts just described are detailed and applied to a

case study and an initial concept design of a PLS. The behavior of a manned PLS is

abstracted into a set of implementation independent interacting objects. The mission will

be a convoy and the system a follower system of that convoy. The case study artifacts

will then be analyzed against the original concepts and research questions and

conclusions and recommendations drawn.

D. RESEARCH QUESTIONS

Can the intelligent MCPS concept DM2 and its supporting foundational concepts

be used to generate a system logical concept design behavior model that:

(1) Is independent of specific technological solutions, to include any human
operator(s)?

(2) Gives equivalent consideration of functional, state based discrete, state
based continuous, and intelligent behavior?

(3) Integrates operational and system behavior?

(4) Enables direct translation to component solutions with scalability and
modularity?

(5) Is independent of a particular component assembly approach?

 26

E. RESEARCH VALUE AND METHOD

This research adapts and advances systems engineering and MBSE methods to

address cyber concerns. The research develops a framework that enables cyber concerns

to be addressed equivalent to physical-mechanical and overall system concerns as part of

system concept design. Use of the framework results an early component-based model of

behavior that can integrate with other components and capability into a trade space. This

model of behavior can also inform or provide a specification baseline for embodiment

and/or configuration item product design beyond an allocated set of requirements

expressed as narrative. Many emergent systems can be classified as MCPS, including

most DOD weapon systems, and could leverage these concepts.

Much CPS development and research starts with the assumption that a CPS

system is needed and there is sufficient knowledge of the requirements or desired

behavior. This research will enable a more definitive determination of the value of a CPS

system, its scope, and its needed behavior and capability. More alternative approaches to

CPS system composition can be assessed, including that a CPS approach may not be

worth pursuing. It also incorporates consideration of the human role and human

intelligence into the CPS design that includes an agent as a potential model of

computation which may warrant unique considerations.

The research method is design science and is patterned after design science of

information systems. Information systems design science research can be distinguished

from empirical and experimental research as seeking to shape the existing world versus

explaining or describing the world (Iivari, 2007). More specifically design science can be

distinguished between a paradigm of behavioral science that “seeks to develop and verify

theories that explain or predict human or organizational behavior,” and a paradigm of

design science that “seeks to extend the boundaries of human and organizational

capabilities by creating new and innovative artifacts” (Hevner, et al. 2004). Several

design science research methodologies have been postulated to provide a framework and

rigor for design science. The similarity of an information system design and an

information-intensive MCPS concept design, warrants a similar design science method. A

 27

design science research method based on an information system (Peffers, et al. 2008) was

selected and the “activities” modified for NPS SE dissertation requirements as follows:

a. Problem Identification and Motivation

Conduct the background investigation and literature search necessary to

specifically state the problems and identify the value if the problem is solved. This is

captured in Dissertation Sections I.A and II. The value of the research in the context of

the literature search is defined in Section I.E.1.

b. Define Solution Objectives

The solution objectives and the expected value should be “inferred rationally”

from the problem statement, background and literature search. The objectives have been

defined by the research objectives or hypotheses and the research questions as captured in

Section I.C and I.D.

c. Create the Meta-artifacts

Information systems design research strategy can be described as building a meta-

artifact (Iivari 2015), where the meta-artifact is “a general solution concept to a class of

problems.” Iivari further points out that an innovative meta-artifact is the outcome of the

research and must be built as opposed to simply evaluated. This approach to research will

be used, except that the research applies generally to systems or systems engineering

versus information systems, with the particular class of problems being MIGVS with

some extension to MCPS. The meta-artifacts are the Concept DM2, the “Agent and

Object Oriented Behavior Model,” and the underlying concepts and class archetypes.

These concepts will be fully developed and described in Section III.

d. Generate the artifact from the meta-artifacts

A particular instance of an initial system concept design will be generated from

the meta-artifacts as indicated in the case study description. An agent and object oriented

behavior model of the “as is” behavior of the current two-persons crew operated PLS

system will be developed. This will represent a technologically neutral view of the “as is”

 28

logical behavior. This “as is” behavior can be mapped to either human of machine

solution for all forms of behavior.

e. Demonstrate and verify with a design artifact that the meta-design
addresses the problem and meets the solution objectives

The preferred PLS concept is the demonstration design artifact. The contribution

of the meta-design toward defining the PLS logical concept design and addressing the

MCPS defined problems, research objectives, and research questions will be analyzed

and captured in Section IV. The analysis will seek to determine:

(1) Whether the concept design initial agent and object oriented model was
both technologically neutral and a model of the understood operational
behavior.

(2) Whether the all forms of behavior are represented in the model.

(3) The overall usefulness of the meta-design in generating the system
concept design

f. Interpret and Communicate the Results

The analysis will be further interpreted and conclusions and recommendation

drawn. The final dissertation will reflect the communication of the results as well the

overall approach. The researcher will create and refine the meta-design concepts. The

researcher will generate the case study concept design model alternatives, except for the

mobility model which will be generated by the project team. The case study models and

some of the meta-design will be generated in SysML. The project team will also collect

and/or generate:

(1) Operational and requirements source data

(2) Convoy mission thread analysis

(3) General SysML modeling techniques and procedures

(4) Comment and feedback on the researcher’s meta-design and case study
SysML model

 29

Original source data will be current convoy doctrine, draft CDDs, standards

utilized in requirements, a MOE/MOP framework (Badger, et al. 2013) an external

context model (JC3IEDM 2007), and SysML modeling guidelines. Some of the source

data is Distribution D or FOUO. The resultant project concept model is also likely to be

FOUO and perhaps some of case study analysis. However, the research concepts and

most aspects of the analysis are not expected to be restricted.

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

II. PRIOR WORK

Relevant prior work can be divided into two parts: 1) general and related domain

system architecture and system modeling approaches and methods that look to integrate

at least some aspect of behavior logic with physical mechanisms and the physical

embodiment of the system, and 2) specific work related to CPS or MCPS system

architecture. These approaches will be assessed against the three research questions

identified previously.

A. GENERAL SYSTEM ARCHITECTURE APPROACHES AND METHODS

Since defining the behavior logic and its subsequent integration into the physical

embodiment of the system has been concept design goal of most any view of systems

engineering, it is important to understand how this is address or not address in general

system architecture approaches and methods. These are reviewed in three types: domain

models, model based system architecture, and architecture and modeling design

languages.

1. Domain Models

As mentioned previously, concept design now requires views into products

beyond a product hierarchy based on physical assembly and containment relationships.

Views into the product set in terms of their logical and executable relationships are now

required. Domain modeling can be described as a way to capture concepts from the

problem domain and build a common language for communication across a project or

enterprise relative to those concepts. As such, it not only has embedded architecture

concepts often in terms of logical layers, entities, and their relationships, but can guide

the specific formulation of a given project’s architecture. A domain model can be a

relatively general reference model for a specific focus, such as the open system

interconnect (OSI) model for network communication (Zimmerman 1980), or can be a

reference architecture that drives an architecture implementation, such as 4D/RCS to be

described subsequently. Domain models can also be subdivided in terms of a technical

domain, such as communications network, computation, agents, software, etc.; or a

 32

system application domain, such as manufacturing, military weapon systems, business

enterprise systems, etc. The focus here is on domain modeling that could be integral or

otherwise aid in the development of an MIGVS concept architecture.

Classification and coding (Tatikonda and Wemmerlov 1992) is “a methodology

which organizes entities into groups (classification)” with codes to “facilitate information

retrieval” or to otherwise manage information about those entities. Relative to

manufacturing, it is one way to implement “group technology” where the entities can be

“parts, assemblies, process plans, tools, instructions, etc.” Similar classification schema

are used to organize domain “parts” for a variety of purposes. The PWBS portions of

MIL-STD-881C essentially forms a component classification schema for all defense

material systems that can be used for engineering, cost analysis and linked to 3D CAD. In

similar fashion, automotive firms, such as Ford Motor Company’s Corporate Product

System Classification (CPSC) codes, use a classification schema to support their entire

system life cycle (Riff 2010), to include aftermarket support, via their product life cycle

management (PLM) system. When applied to a conceptual design phase, these types of

schema can be considered to be a form of domain modeling that supports

conceptualization of the system; a way to organize and structure the domain logic that

includes a common language for that logic. These types of approaches apply better to the

physical mechanical portions of the systems, less so to cyber components, particular

those above control systems that can be directly related to the mechanical systems that

they control.

As in concept design for product development, domain modeling in software

engineering is a way to capture concepts of the problem domain as regards software. It

can be applied to business process modeling for service oriented development, real-world

objects in OOAD, or to any domain that the software is meant to address (Evans 2004).

However, software domain modeling is more focused on software engineering techniques

for model creation during a project or on some form of software product line engineering

for an enterprise, not on the specific generation of a reusable application structure or on

the software product line itself, though within a given company, there are apparently

many examples of product line software (SEI 2016). They are primarily focused on

 33

interoperability and composability of components to improve software design and

development and less on early concept modeling and trade space support.

Fundamental techniques for domain classification can range from a simple

taxonomy to a machine readable formal ontology. Taxonomies typically organize objects

hierarchically in a tree structure and can have generalization/specialization and

parent/child relationships and have provide useful for developing domain vocabularies

and organizing domain entities from at least one aspect or view. Ontologies can include

taxonomic relationships but also permit other types of relationships to address multiple

aspects and have a greater emphasis on formal specification. Modeling complex

engineered systems do not lend themselves to classification in a single hierarchy. In

OOAD methods (Booch et al., 2007), “large application discrete systems” relative to the

software only, have both “is part of” and “is type of” hierarchical relationships. The

MIGVS domain with multiple forms of logic to include discrete software plus a physical

dimension cannot be captured in a single hierarchy. It is possible that a MIGVS domain

ontology (Semy, Pulvermacher, and Orbst 2004) could provide the necessary structure

and semantics for a classification schema. An example of a domain ontology as a

category of ontology is illustrated in Figure 8. The general idea is that an upper ontology

can be used to define basic concepts about the world that can then be used to build a

domain ontology, perhaps through one or more intermediate ontologies. Any given

domain ontology ideally could be accessed by reasoning agents over the semantic web

(Ding et al. 2005). Given the lack of standardization of upper ontologies and the

difficulty in defining base concepts suitable for all domains, this approach at best is more

notionally than formally linked, with the possible exception of biomedical domain (Smith

et al., 2006).

 34

Figure 8. Domain Ontology. Source: Semy, Pulvermacher and Orbst (2004).

From a SE standpoint, some ontological focus has been placed on SE as a process

for integration (van Ruijven 2013). An area of limited focus is the development of an

ontology for systems. The DODAF Version 2.0.2 adapted an enterprise architecture

ontology as the conceptual basis for its data metamodel (DM2) and architecture

description. However, it is unlikely that these concepts have the appropriate basis for all

DOD systems (Giachetti 2015) as opposed to just DOD enterprise systems or those that

approximate enterprise systems. An MIGVS ontologically is composed of many “base”

system concepts or classes (i.e., a cyber-physical system, a mobile system, a military

system, a vehicle system). One would expect that each of these in turn have at least one

unique concept that distinguishes it from other system types. Unfortunately, no such

system intermediate ontology exists linked to a higher level ontology of underlying

concepts fundamental to all systems.

Software domain concepts like OOAD, model views, separation of concerns,

crosscutting concerns and constraints, and aspect-oriented programming, are essentially

techniques to address the multiple types of concept entities and relationships embodied in

relatively complex software. However, there are often underlying assumptions about the

 35

type of software (e.g., discrete software systems), and about the type of underlying

hardware (e.g., hardware that runs discrete systems software). Some of these approaches

could be useful to systems like MIGVS, but would need to be extended to cover all forms

of software and logic, all forms of computational hardware and all the physical

mechanical hardware relative to the domain. Furthermore, to extend to MIGVS as a

system application domain would require the use of reference models that can more

explicitly capture the critical concepts for MIGVS as a domain. Each reference model

captures critical concepts from a certain aspect, but all has appropriate crosscutting

relationships to concepts in other reference models in the domain. These reference

models could also be developed to at leverage fundamental concepts in the appropriate

upper ontologies.

2. Model-Based System Architecture

A MBSE survey (Estefan 2008) provide a comprehensive capture and synopsis as

well as key references relative to MBSE to include definition, advantages, leading

methodologies and other related aspects. Most of the MBSE methodologies have either

an explicit approach to defining a system architecture or an implicit one driven by the

methodology. They will be reviewed as a body of work focused on system architecture

and not as a comprehensive review, comparison, and critique of each specific

methodology. The order of the review is arbitrary and aimed at capturing a superset of all

critical concepts and features. Duplicative features found in subsequent methodologies

are not repeated. The superset of concepts and features will then be compared and

contrasted with the specific objectives and concepts of this research.

a. INCOSE Object Oriented Systems Engineering Methodology (OOSEM)

Both a general overview and an application of OOSEM with a focus on

architecture are shown in Figure 9. Key concepts are:

(1) Compatibility with object oriented analysis and design (OOAD)—
though a full set of reasons why this compatibility is desired nor the
original objectives of OOAD are not articulated, many are stated (OMG
MBSE Wiki 2011) or can be inferred: use case/scenario analysis to
establish measures of effectiveness (MOEs), requirements elaboration

 36

and measures of performance (MOPs); the concepts of classes,
inheritance and object models for logical decomposition and white
box/black box elaboration, and integration with object oriented software.

(2) Use of general purpose modeling language, particularly UML/SysML—
the advantages of a general purpose modeling language such as SysML
over a niche language is its potential to capture a wider market and
therefore offer a more expansive ecosystem (trained users, compatible
software, tool vendors, etc.) at a lower cost. A general purpose language
will also be easily understood by not only systems engineers, but other
engineering disciplines that must work or integrate with a system model.

(3) Multi-Levels of architecture abstraction—the 2nd pyramid view (House
and Pearce 2012) in Figure 9 shows multiple view into an architecture
that progress through an OOSEM process. In addition to the use cases, it
introduces a functional architecture that can be expressed in non-object
oriented techniques such as functional flow block diagrams (FFBDs), a
technology and implementation independent logical architecture, and
finally a physical architecture that can be arrived through a synthesis and
trade process.

Figure 9. INCOSE OOSEM. Source: Estefan (2008) and House and Pearce (2012).

b. IBM Rational Rhapsody and Rational Harmony for SE

Since this methodology (Hoffman 2011) is focused on best practices that use

UML/SysML, it does not differ in principle from INCOSE OOSEM and those objectives.

However, there are few differences and many things that come to light in this far more

detailed methodology:

(1) Integration with real time embedded components—rather than the more
general objective of integration with software, this methodology has a
strong focus on embedded components or what it terms as systems that

 37

are highly state based. This leads to much more reliance on SysML
statechart diagrams.

(2) Behavior diagrams applied to use cases—all three SysML behavior
diagrams: activity, sequence and statecharts are considered necessary
because of their different strengths to fully elaborate the internal
functions and behaviors required of the architecture

(3) Use cases for “logical decomposition” - decompose functions and
operations using multiple behavior views, use cases baseline system
requirements and provide behavior (and therefore also function)
allocation to architecture components.

(4) Design concept and design synthesis—The design concept model
identified the major physical components. Design synthesis adds
weighting/criteria to the model to evaluate major alternatives. Once
major components are defined, detailed design defines ports/interfaces
and to state behavior to those components.

(5) Architecture visualization and verification—use the model description
for visual verification, animation, automatic generation of sequence
diagrams.

(6) Conceptualization Modeling—in RUP terms this would be part of
inception and elaboration as well as iterative development. Key idea
being that a whole model of the system is created relatively quickly in
the development and then refined and elaborated toward a design.

(7) Separation of Concerns/Software Frameworks—though often implied or
sometimes even explicitly referred to in RUP methodology and
associated concepts, separation of concerns deserves its own treatment
since it leads to the concept of views (Goedicke 1990) in software
frameworks and the ability to “neglect” certain parts of information for
the sake of other parts of concern to a particular stakeholder or set of
stakeholders. This in turn promotes the concept of modularity and
linking the idea of a main function for a given modules.

c. Jet Propulsion Laboratory (JPL) State Analysis

The JPL state analysis MBSE approach is based on a “state based control

architecture” (Wagner et al. 2012) shown in Figure 10. It is perhaps more suited for a

domain, or at a point in the systems engineering process, where there is more of a priori

or clear distinction between the behavior system and the overall system

topology/constraints and physical mechanical systems, and where there is a less complex

 38

external environment than that found in the MIGVS domain. However, in terms of early

or concept design MBSE and behavior modeling, and as a potential companion

methodology to be used alter in the system design, there are a few key concepts that

should be considered:

(1) Systems and software engineering interdependence modeling for
complex systems—as systems have become more complex, reliance on
functional based methods and narrative requirements are no longer
sufficient between system and software design. A model of the behavior
of the system needs to be defined by systems engineering and used for
software design.

(2) Complex or multiple interacting control systems—the domain of interest
is not simply real time or closed loop control, but multiple interacting
control systems that need to adapt to goals or user input, uncertainty and
faults.

(3) Goal based behavior is integrated into the model—Goals are integrated
into the model as state intent that reflect what the operator or agent
would like do as a way of integrating the operator as part of the control
system. Complex activity can be planned and executed via goal
networks or re-planned based on goal changes and faults.

Figure 10. State Based Control Architecture. Source: Wagner et al. (2012).

 39

d. Vitech Model Based Systems Engineering (MBSE) Methodology

The Vitech MBSE methodology (Long and Scott 2011) adds methodology,

system model, and modeling language features that have not previously been highlighted:

(1) Multiple layers of system design abstraction—Vitech has its own
detailed approach to this called STRATATM, but as a general feature it
can be summarized as follows: the entire system design is captured at a
level of abstraction, the abstraction is refined and detailed in stages until
system design is complete, each stage must satisfy completion criteria
before proceeding to the next stage. The culmination of each stage
results in system verification and validation for that stage of abstraction.

(2) Model the whole system—this requires having a complete model in
terms of depth and breadth, behavior (time independent and dependent)
and structure, and boundary conditions. It is more than a sum of views
but an integrated whole at successive levels of detail as the design
progresses.

(3) Model system context—a system’s functions and interfaces cannot be
fully understood without understanding their interactions with the
external environment. This in turn requires a specific focus and explicit
rationalization of the system boundary.

e. Dori Object-Process Methodology (OPM)

The “integrated process and object” approach in OPM (Dori 2014) defines a

formal relationship between functions/processes and objects into a single diagram to

promote more integrated reasoning that requires less generation of diagram types

compared to multiple views. It creates bridge between structured methods with object-

oriented methods. Dynamic behavior of objects are reflected by an object state change

driven by processes.

f. Integrated Systems Engineering (ISE) and Process Pipelines in Object
Oriented Architecture (PPOOA)

The ISE PPOOA (Sanchez 2012) approach combines “classical” engineering

approaches with model based approaches, particularly at the systems engineering level.

However, it does add some unique concepts for a more complete model based approach

not covered yet.

 40

(1) Operational Concept—this is an abstract model of the operations of a
system. A scenario than is a particular path through this concept for a
given set of conditions

(2) Capability—the system’s ability to perform an effect. Scenarios then are
transformed into a set of system capabilities

(3) Quality Attributes/Constraints—constrain the system architecture
relative to meeting its functions or performing its capabilities

(4) Early concurrency modeling—for software intensive mechatronic based
systems it is important not to just establish the logical relationships and
collaboration in the object model, but to model the concurrency to drive
out timing constraints.

Taken as a whole, the MBSE methodologies reviewed provide a superset of

concepts that need to be considered in the development of a model based MIGVS concept

architecture. However, even taken as whole, they do not provide the concepts and

features necessary to meet the objectives of this research. Particular areas of note are as

follows:

a. Object oriented modeling of a system—As noted in Figure 9, the OOSEM

methodology views the “logical architecture” as an abstraction of the “physical

architecture.” This is a different view of the relationship between logical and physical

from software OOAD (Booch et al. 2007) and the software “4+1” model (Kruchten

2004). The logical view enables a relatively granular view into software components

based on how they interact, not how they are assembled. The equivalent of software

physical assembly of those same components is provided in another view, referred to as

the physical view in Figure 3. As such, they provide different views or abstractions of the

same “physical components,” but the logical view is not an abstraction of the physical

view or deployment view. Several of the other methodologies do not as explicitly model

a logical architecture, but seem to infer a similar view. OPM and ISE POOPA seek to

combine structured and object oriented approaches, with the former citing integrated

reasoning of process and objects, but that integrated reasoning can be provided by having

two views into the same components as practiced in the aforementioned software

approaches. The objects need to encompass more than software however, the objects

 41

must also consist of computational hardware, physical-mechanical components, sensors,

etc.

b. Assessing attributes that impact behavior—A focus of ISE POOPA is

quality attributes or constraints and early concurrency modeling for mechatronic-based

systems, which can be considered a cyber-physical system or least a pre-cursor thereof.

These attributes from a system standpoint can be considered in two varieties: physical

attributes and behavior attributes. The physical attributes, such as weight and volume, are

best addressed in physical views of the architecture. Here again, as practiced in software

OOAD, there is an object-oriented view that can be used to address behavior attributes

such as timing, often referred to as the “process view.” The executable view model

provides that view at a system level of abstraction. The overarching multi-view model

provides integrated reasoning of both behavior and physical attributes through different

views of the same components. It is not clear how such reasoning would take place with

any of the other MBSE approaches.

c. Use cases and intelligent operation—The concept of a use case and a user

leads to some confusion as a system acquires more endemic intelligence. This is best

illustrated for a system facilitating a business transaction, such as an automatic teller

machine (ATM). If the ATM was only partially automated and still required a teller to

help it function, the teller is using the machine to facilitate the customer’s objective. In

that sense the teller is operating and the customer is using. The teller is required because

their intelligent capability was not fully incorporated into the system design. To consider

the teller as an actor in a use case distinct from the system and as an a priori consideration

in the design, is to arbitrarily limit the design and confuse the purpose of the system

which is to provide a transaction for a customer. To not model the teller’s behavior in any

way and commit to full automation is to arbitrarily limit the system alternatives and to

lose valuable insight into needed behavior. The use case of a customer is relatively

enduring and distinct from the cases involved in the operation and maintenance of the

system, which should be trade space and concept design dependent.

d. Intelligent behavior modeling—none of the MBSE methodologies

explicitly model intelligent operation behavior. The JPL SA does provide a mechanisms

 42

for goals, but they seem to be human provided and managed, not a way for the system to

operate intelligently. The focus of several methodologies seems to be more on a control

system and the thing being controlled, not on intelligently operating to goals and

interpreting the external environment as required. The concept of an agent enables both

intelligent behavior modeling and interaction of with control system objects which can

then interact with physical-mechanical systems. The operator can be modeled as part of

the system and the “customer” modeled external to the system or as part of the context.

For a MIGVS, the “customer” is not always a willing participant in the transaction (e.g.,

an enemy vehicle hit with a large caliber round). The effects or goals can reflect a change

of state in the external environment. The external environment or context and its

interaction with the system’s intelligent behavior, brings an increased focus and emphasis

on modeling that context. The current MBSE methodologies do not explicitly model

intelligent behavior and its interaction with context modeling.

3. Architecture and Modeling Design Languages

MBSE/MBE approaches require that system design and system conceptualization

should be supported by models. As indicated previously, 3D CAD models support the

physical architecture conceptualization and embodiment design, with focus on geometric

and some other physical attributes and relationships. As a descriptive design language,

3D CAD provides little support to understand and capture the attributes and relationships

of objects as they impact behavior. These attributes and relationships require a different

type of design language, yet can still integrate with 3D CAD for overall system

conceptualization and embodiment design. Three such design languages are the Object

Management Group’s System Modeling Language (SysMLTM), the Society of

Automotive Engineers (SAE) Architecture and Analysis Design Language (AADL), and

the Modelica Association’s Modelica®. These design languages will be reviewed only

for how their most basic underlying architecture concepts of structure, behavior and

interconnection, support MIGVS conceptualization and embodiment design, not on their

overall efficacy to support system engineering and product development.

 43

All three provide constructs for representing behavior, structure and

interconnection between structural elements. SysML, as an extension of the Unified

Modeling Language (UML), provide a form of object oriented structure called blocks that

can have “is a type of” and “is a part of” relationships. Native property types supported in

the language are biased toward viewing the blocks as hardware, but anything in SysML

can be typed as a block, including the interconnection mechanisms. It provides high level

behavior description in terms of use case, activity and sequence diagrams. Modelica

(Fritzson 2012), also provides an object oriented, structure, with a focus toward

hierarchical physical decomposition covering multiple domains (e.g., electrical,

mechanical, hydraulic). The interface classes are also focused on these physical domains

via types of energy. Critical to the approach is to link the structure to mathematical

equations at the leaf level for execution. Though it provides support to event or discrete

time, beyond control systems, it does not attempt to address high level behavior and

software structure. It does have a UML profile called ModelicaML that allows Modelica

constructs to be represented in UML/SysML.

AADL, as shown in Figure 11 (Hudak and Feiler 2007), is also focused on the

“lower end” of the system architecture, but focused more extensively on the

computational architecture and behavior of the system. As such, it models both the

software and computation in connection with physical system components at a level of

abstraction above design. Going counterclockwise from the upper right of Figure 11, its

view of system architecture is one of a set of control systems interacting with a set of

physical devices. Each control system can be further decomposed and the behavior of the

software in its computation execution can be modeled and examined. The ports shown in

Figure 11 are actually groups of logical interfaces that can be elaborated and/or

decomposed. Software can be modeled as threads and latency examined through the

processing, memory and bus interconnects. Though there is the ability to model software,

computation hardware, and physical mechanical components, like Modelica there is no

facility to address higher levels of behavior such as those that might embodied in discrete

software.

 44

Figure 11. AADL Cruise Control System Hierarchy. Source: Hudak and Feiler (2007).

Similar to Modelica, there has been some work to look at integration of AADL

with SysML (Behjati et al. 2011). There is also effort at improving the link (Espinoza et

al. 2009) between SysML and a UML 2 Profile known as Modeling and Analysis Real-

Time and Embedded Systems (MARTE). This along with the Modelica integration work

identified above indicates that SysML is best suited at the higher levels of abstraction and

at higher levels of a behavior hierarchy. AADL and Modelica then are perhaps better

suited at lower levels of abstraction and of the behavior hierarchy. This in turn suggests

that at the level of system concept design, SysML would be better suited to capturing and

analyzing the system architecture relative to major trade space analysis. Once the

computation architecture and control elements are defined, the detailing of the interfaces

for the embodiment design as well as preliminary design of the configuration items,

might be better supported by a variety of languages, such as AADL or Modelica and

perhaps other design languages, such as those for software design. Alternatively,

depending on project needs, the SysML model could be further elaborated to achieve the

same objective and then AADL or Modelica employed at the level of product architecture

and design. Regardless, for SysML to integrate with lower level architecture or design

models, it must provide a suitable overlap of information. This reinforces the need to

model both high level behavior with lower level real time and physical mechanical

 45

behavior as interacting objects at a system level of abstraction. If this capability is not

built into native modeling language, it must be created a specialization of more general

methods.

B. CPS SYSTEM ARCHITECTURE

A MIGVS has been evolving toward being an overall CPS (i.e., an increasingly

level of computational control over its physical processes). A fully autonomous ground

vehicle would in fact need a base CPS layer in order to realize the higher levels of

intelligent behavior required for autonomy. As such, system architecture and modeling

approaches for systems that are “CPS-like” will need to be reviewed in addition to those

approaches for systems that are explicitly identified as CPS.

1. “CPS-Like” Engineering, Architecture and Modeling

The emergence of CPS systems did not wait for the term cyber-physical to be

defined. Several types of systems have been described by terms that are essentially CPS

or have significant overlap with CPS features. These include systems described as

intelligent, mechatronic, agent based, multi-agent, heterogeneous, autonomous and

robotic. Systems are also described as combinations of these terms. Increasingly,

emerging research in similar areas are being described as CPS or at least as relating to a

particular problem confronted by CPS. Research in these areas that are most relevant to

the MIGVS architecture conceptualization will be reviewed.

The 4D/Real-time Control System (RCS) reference model architecture (Albus and

Meyestel 2001) models a CPS in general and an MIGVS in particular. The 4D refers to

the four dimensions of intelligence defined as Sensory Processing, World Modeling,

Value Judgment and Behavior Generation that are embodied within an RCS

computational node (Albus 2002) as shown in Figure 12. These nodes are arranged in a

hierarchical control structure that can represent a vehicle system and military unit as

shown in Figure 13. Additionally, there is a companion methodology for capturing

knowledge and representing it within 4D/RCS shown in Figure 14. The 4D/RCS

approach addresses many important concepts for a MIGVS which are briefly summarized

as follows:

 46

(1) Multiple forms of behavior logic are captured. It include basic feedback
control, intelligent control, and task-oriented behavior.

(2) Integration of computational or cyber behavior with physical
mechanisms. Systems can be formed by scaling up from the control of
physical systems to the highest level mission behavior and include
timing constraints.

(3) Repeatable methodology for assessing the computational needs.
Operational tasks can be captured from basic doctrine and related to
computational nodes and then mapped to system behaviors.

Figure 12. 4D/RCS Computational Node. Source: Albus (2002).

Figure 13. RCS Based Notional Military System and Unit Structure.
Source: Albus (2002).

 47

Figure 14. RCS Methodology for Knowledge Capture and Representation.
Source: Albus and Barbera (2004).

As a reference model architecture, 4D/RCS is a blueprint for the computational

architecture design. It does not have the scope or the necessary abstractions to

conceptualize an MIGVS system architecture. The overarching system is not addressed

so it does not enable the necessary trade space to determine the optimum system concept

in terms of cost and operational effectiveness. Similarly to some of the MBSA

architectures within the MBSE methodologies and the architecture design languages, the

4D/RCS reference model architecture could be applied to system embodiment design of

the computational architecture once the system has been conceptualized and major

configuration items identified, particular if the concept decision identified an autonomous

system solution, determined why an autonomous solution achieved optimum mission

effectiveness, and determined that a 4D/RCS based implementation was the most effect

approach for realizing the systems computational architecture.

4D/RCS can also be described as an agent based or multi-agent system reference

model architecture. Each RCS computational node represents a certain type of agent. In

software agent terms (Mayk and Regli 2006), multi-agent systems (MAS) “incorporate

 48

several agents where the goals of the agent system are achieved through the interaction of

the individual agents,” and a MAS reference architecture is one of many possible

derivations from an MAS agent reference model and can guide the development of many

MAS designs. Depending on the level of abstraction, agents can be considered almost

identical to objects or quite distinct. However, even at the low abstraction level of

software programming, agent oriented programming (AOP) can be defined to be a

“specialization” (Shoham 1993) of object oriented programming (OOP). At the level of

software design language the differences are less pronounced. Agent modeling (Bergenti

and Poggi 2000) and interactions (Regli et al. 2014) have been introduced into UML for

example. At the even higher abstraction level of concept architecture, differences

between agents and other objects should be even less pronounced

Beyond agent-oriented software engineering and agent-oriented programming

languages alluded to above, there are also high level agent-based methodologies (Tveit

2001). Of particular interest is Multiagent Systems Engineering (MaSE) (Deloach et al.

2001) with its link to architecture and “system design” as shown in Figure 15. Of

particular note is its use of goals in lieu of or at least one type of requirements and the use

of roles to structure tasks and “agent classes.” The latter is useful to mitigate differences

in agent objects and other “system objects.” As shown in the review of architecture

design languages and in OOAD, objects can be a physical-mechanical mechanism, a

computer, a control system, a segment of code, etc. They all represent some physical or

“real-world thing” if we adopt the OOAD view that software has a “physical” realization

in code, programs, executables, assemblies, etc. For an “agent object,” its physical

realization can be software code and perhaps sensors and actuators, but it can also be a

human operator when the entire system is considered instead of the software only. More

definitively, it can be an “instance” of a given human operator performing a role.

Whether assigned to software and machine or to a “human instance,” agents cooperated

together to achieve goals, which is a different and necessary augment to the more

standard view of functions and requirements.

“An intelligent mechatronic system is capable of achieving given goals under

conditions of uncertainty” (Rzevski 2003), as compared to an automated mechatronic

 49

system which self-regulates to predictable changes in the environment. As such, the

mechatronic system domain seeks to leverage architecture techniques already discussed

like multi-agents, architecture design languages etc. However, it does bring a unique

perspective on system concept design as a necessary first step to link to multiple design

disciplines and integration with MBSE. A specific approach to model based

(Thramboulidis 2010) mechatronic system concept design is shown in Figure 16. Similar

to AADL, it defines mechatronic components (MTCs) that encompass electronics,

software and mechanics. These component areas with their specific domain model are

then integrated to a system view to form a “SysML 3+1 model.” System concepts are

then iterated with component concepts and technology selection until a final system

architecture is selected. This approach does not address higher level logic and trades

relative to human task/agent components. Also, though it provides component linkages to

product tools, it is not clear there is enough fidelity and scope at the system logical

structure and behavior to fully assess the interdependence between MTCs and address all

MIGVS component types.

Figure 15. Multiagent Systems Engineering. Source: Deloach et al. (2001).

 50

Figure 16. Mechatronic System V-Model. Source: Thramboulidis (2010).

Intelligent manufacturing systems is a domain that has seen a certain evolution

and variety of techniques in intelligent automation with some recent emergence

connecting in CPS. A lineage has been identified (Leitao, Marik, and Vrba 2013) linking

holonic manufacturing systems (HMS) and architectures form the international intelligent

systems manufacturing (IMS) program, International Electrotechnical Commission (IEC)

61499 for distributed control, multi-agent systems and standards, service-oriented agents,

and holonic agents. A holon in this context has been defined (Van Brussel et al. 1998) to

be an autonomous and cooperating building block of a manufacturing system” where

holons can be considered whole or part of another holon. Holons “cooperate to achieve a

goal or objective” within a holarchy that limits their autonomy with cooperative rules. A

view of holons and their structure from the PROSA HMS architecture is shown in Figure

17 using UML notation for specialization and aggregation. An HMS is composed of three

basic holons: order, product and resource. These in turn can each be specialized into

many types as shown for “Resource Holon.” The concept of holons naturally lends itself

to domain modeling, object oriented and multi-agent system concepts. However, whereas

agents have been successfully deployed in “production planning, scheduling and

logistics” they have not been successfully deployed in factory automation beyond the

 51

laboratory or prototypes. However, again, industrial multi-agent systems are still viewed

as potentially promising.

Figure 17. Holonic Building Blocks in Manufacturing Systems.
Source: Van Brussel et al. (1998).

The lineage from HMS/IMS to IEC 61499 has met with more factory automation

success as well as direct CPS linkage. IEC 61499 is meant to define a standard for high

level control or “distributed intelligence” (Cruz Salazar and Rojas Alvarado 2014) above

the programmable logic control layer and first emerged as a lower level extension of

holonic and agent based approaches. The key construct is a functional block (FB) as

shown in Figure 18. All functional blocks share a flow of events and a flow of data.

There are basic FBs for general behavior, service interface FBs for network or

environment interface, and composite FBs that enable composition and scaling of a

complete system. This approach enables a hardware independent event driven execution

of lower level control systems. It has also been viewed as competing (Kruger and Basson

2013) with a MAS approach or as a better way of realizing (Sorouri et al. 2015) agent

like behavior at the device level. There also seems to be few practical realizations of the

overall IEC 61499 standard. The simplicity of FBs may lead to a lack of flexibility in

intra-communication for complex systems or to adapt to changes.

 52

Figure 18. IEC 61499 Functional Blocks. Source: Salazar and Alvarado (2014).

The FBs facility to link discrete events to continuous time control has led to some

initial investigation of model integration (Pang et al. 2015) into the Ptolemy II framework

(Ptolemy II 2014), to include introducing time stamps to FB semantics (Vyatkin et al.

2015), as a means of “maintaining cyber-physical system properties.” A higher level

architecture or “unified system framework” (Lee, Bagheri and Kao 2014) for

manufacturing systems has been offered that incorporates a cyber-physical layer as one of

5C shown in Figure 19. The CPS layer is seen as a “central information hub” and a means

to harness big data enabling high level resiliency goals. This general framework would

need some implementation detail before it could considered an architecture and it is not

clear why cognition is considered outside of CPS versus a certain model of computation.

Though lessons can be learned for the MIGVS domain, the dynamic environment and

system constraints of mobility will make manufacturing CPS solutions difficult to apply

directly.

 53

Figure 19. Manufacturing System 5C Architecture.
Source: Lee, Bagheri, and Kao (2014).

2. CPS Engineering, Architecture and Modeling

The morphology of terms in intelligent manufacturing is a clear example that the

concerns of CPS have been around for some time now, at least for certain domains. For

MIGVS or intelligent manufacturing systems, CPS emergence has resulted in an

increased recognition of certain concerns along with new approaches and techniques for

addressing them. There is a greater recognition of the interdependence of multiple

technical domains within computational and engineering disciplines as required to

establish a foundation for CPS. These technical domains include (Baheti and Gill 2011):

networking, control, software, human interactions, mechanical, electrical and others. A

CPS survey (Khaitan and McCalley 2015) classified the crosscutting issues into design,

aspects and applications. Another survey (Gunes et al. 2014) referred to challenges that

addressed similar issues to aspects. The term quality attributes will be utilized to address

these similar issues.

Cyber-physical systems and the Internet of Things (IoT) are sometimes used

interchangeably. In this research, IoT will be considered as a type or domain of CPS or as

 54

an enabler to a type of CPS. The IoT set of concerns overlap with a MIGVS, but each

have their unique concerns. The unique IoT set of concerns is defined as distributed

computing utilizing a web or Internet-like protocol, geographic dispersion of devices,

composability, and large data volumes. A MIGVS is a system that contains a hierarchy of

networked devices engineered to meet its capabilities within mobility and other

constraints. Once engineered, it may also then be linked into a larger network with an

Internet-like protocol as a “thing” within an IoT or an “Internet of systems.” It may also

expose its devices into other IoT type linkage, such as for maintenance. In this sense, the

MIGVS is both a CPS and a thing that can participate in a larger CPS, as well as a set of

things that can participate in multiple other CPS systems. Key distinctions are an internal

system hierarchy and level of dynamic composition possible. CPS literature that address

IoT concerns will only be reviewed to the extent it can be applied to MIGVS concerns.

a. CPS Architecture and Modeling

CPS design (Khaitan and McCalley 2015) was defined to include several areas.

The particular area relevant to this research is “architecture and modeling.” Khaitan and

McCalley further subdivided this area into “model-driven development,” “meta-

architecture and meta-programming,” “semantics,” and “co-design.” Properties will be

discussed as part of attributes. Many of these areas overlap with each other and with

considerations of attributes and domain applications. Semantics can include both

behavior and properties. Models and behavior semantics can be intertwined. In addition

to the IoT and MIGVS distinction, a distinction between concept design and embodiment

or detailed design will further restrict the literature search. Consideration will be given

embodiment or detailed design research to the extent that it helps determine what should

be captured in an informative concept design.

Much of the model-driven development survey (Khaitan and McCalley 2015)

included research and development focused on the concerns of IoT. One architecture

example (Tan, Varun and Goddard 2009) as shown in Figure 20, highlights both the

distinctions and the similarities between IoT and MIGVS. Similar to 4D/RCS (Albus and

Meyestel 2001), it has an optional direct link of sensors or sensor processing, an optional

 55

direct link of actor “motes” and control system or behavior generation, and an integrated

model of the external environment or world. Unlike 4D/RCS, there is a relatively flat

sensor and control hierarchy, a network and data base server distribution schema, and a

human operator performing some undefined role. Like 4D/RCS, it classifies events

relative to the hierarchy and gives them both spatial and temporal properties. However,

because of its relatively flat hierarchy, it processes events only as symbolic information

and does not include the iconic information at the layers immediately above the control

system in 4D/RCS.

Figure 20. “IoT-like” CPS Architecture. Source: Tan, Varun and Goddard (2009).

 56

CPS modeling challenges (Derler, Lee, and Sangiovanni-Vincentelli 2011) can

also be distinguished by the “joint dynamics of computers, software, networks, and

physical processes.” The fundamental modeling challenge is combining the “sequential”

nature and discrete event based software with continuous physical processes that can

occur concurrently over time or during execution. A model based design methodology for

CPS (Jensen, Chang and Lee 2011) has been proffered that makes extensive use of

simulation for both analysis and verification. This puts the modeling emphasis on

generating execution models versus descriptive or notational models. This methodology

rests on two fundamental concepts: platform-based design (PBD) and actor-oriented

design.

PBD is utilized to “separate application logic and architecture-specific software

into modular components” (Jensen, Chang and Lee 2011). A platform is defined

(Sangiovanni-Vincentelli 2008) as “a library of components that can be assembled to

generate a design.” As illustrated in Figure 21, a system platform has an application or

functional space that consists of a set of designs that can be analyzed from the top down

to select an instance. There is also an architectural space with a stack of platforms each of

which consists of a set of designs and abstraction isolation between layers of the stack.

Components in the architecture stack can be selected bottoms up based on rules. The

mapping of the application to the architecture occurs via an Application Program

Interface. One goal of this approach is understand and distinguish the functionality from

the hardware implementation to achieve greater reuse.

 57

Figure 21. Platform-Based Design. Source: Sangiovanni-Vincentelli (2008).

This approach has been adopted and adapted for actor-oriented design of cyber-

physical systems as shown in Figure 22 with an illustration of an architecture platform

stack. A key problem for CPS is that the abstraction layers have “failed” (Lee 2008) to

sufficiently isolate and/or express key attributes important to CPS through the layers.

These attributes include predictability and reliability, particularly as regards timing

properties. As Lee goes on to explain, at the chip platform components are produced that

are reliable and predictable. However, the reliability and predictability are not expressed

to upper layers and each layer increasingly introduces some level of loss. Additionally,

CPS by their nature are concurrent (Lee 2008), which is another system attribute

insufficiently addressed via software threading and hardware interrupts managed by the

operating system. Solutions (Lee 2008) to these challenges can occur from the bottom up,

but would require a significant modification to computer architecture and software

practice, or can occur from the top down where “programs” are replaced by “models” of

the system behavior and software “synthesized” from those models. The latter is

accomplished via actor-oriented models.

 58

Figure 22. Computing Abstraction Layers. Source: Lee (2008).

An actor as a model of computation (Hewitt 1977) was first postulated by Carl

Hewitt and formalized by Gul Agha (Agha 1986). In general, an actor (Hewitt 1977)

communicates asynchronously and concurrently with other actors only through messages

and has internal behavior and local state (i.e., does not share a global state). This makes

the actor and inherent concurrent model of computation (MoC), as opposed to a Turing

machine which is formulated as a single device acting on a sequence of discrete inputs.

The Turing machine can be considered a specialization (Hewitt 1977) of the actor model.

The actor model has been adapted for application to CPS and distinguished from other

languages and methodologies (Lee and Neuendorffer 2004), particularly OOAD, as

follows:

(1) Actors communicate (Lee 2003) with other actors in a model via ports
and channels and have fixed parameters that configure its operation. A
model of an actor is a hierarchical abstraction of the actor as shown in
Figure 23. The model is an actor itself and is composed of actors.

 59

(2) The model hierarchy (Lee 2003) has subclasses that inherit actors, ports
and parameters of classes.

(3) Ptolemy II (Ptolemy II 2014) is a modeling and simulation tool based on
the actor model. A “Director” in determines the MoC to include the
communication mechanism and determines when to execute.

(4) Simulink and LabVIEW can be considered domain specific actor
modeling languages. Simulink has a continuous-time semantic MoC and
LabVIEW a dataflow semantic MoC.

(5) Software objects in OOAD invoke a method (Lee 2003) in a call/return
sequence which requires a transfer of control. As Lee explains, this leads
to “frail” composition where new components can break interactions and
issues of managing threads of control such as deadlocks.

(6) SysML blocks linked via ports in internal block diagrams are “closely
related” to actors (Ptolemy II 2014) but reflects a notational standard and
do not unambiguously define behavior semantics.

(7) Actor models have abstract behavior types and exhibit behavior
polymorphism (Lee 2003) as opposed OOAD object inheritance and
abstract data types. The behavior is determined by the MoCs. The
various MoCs supported by Ptolemy II are shown in Figure 24. Note that
the actor model could implement a MoC of sequential untimed threads,
but only as a deliberated design decision.

Figure 23. Actor Model and Abstraction Hierarchy. Source: Lee (2003).

 60

Figure 24. Ptolemy II Models of Computation. Source: Ptolemy II (2014).

The actor model shows much potential to support cyber-physical systems design,

particularly if the “computational” model can be generalized to all types of execution so

as to fully integrate physical non-computational components. However, there are not

many examples of this, particularly for large scale systems. For large scale systems, it is

not clear that reasoning about behaviors as actors is better or more intuitive than

reasoning objects as things. These systems could have a hierarchy of behaviors with a

hierarchy of networks and control. Higher level behaviors are managed as workflows via

a graphical user interface (GUI) (Altintas et al. 2004) in Kepler as a companion to

Ptolemy II. The reuse of both workflow and low level “task behaviors” that go on top the

“architecture stack” is also unproven. It also seems to be more suitable for embodiment

and detailed design than concept design which needs a more unifying principle and

language across multiple engineering disciplines. Finally, it is not clear how agents or

“context aware actors” would be accommodated and whether a unique MoC

implementation or base behavior class would be required.

There are other efforts utilizing actor models. These include integration of a

network simulator with Modelica (Al-Hammouri 2012), and object-oriented petri nets

 61

(Ma, Fu, and Yu 2012). Modelica as an equation constraint language and petri nets

constitute a singular MoC. The concerns of the Ptolemy II would apply similarly to these

efforts or MoCs. However, they might find a niche as a more detailed design tool or as an

analytical tool. It should also be noted that 4D/RCS by these definitions would be

considered an actor model.

A meta-architecture approach (Rhajans et al.) with support from a general purpose

architecture description language (ADL) called Acme (Garlan, Monroe, and Wile 2000)

was defined to assess alternative architectures. An “architecture style” was created in

AcmeStudio (Schmerl and Garlan 2004) utilizing “open and interconnected systems”

concepts (Willems 2007) to include physical elements. Very broadly, Acme was designed

to be a component based software ADL with multiple forms of connectors/interactions.

One of its objections to OOAD is that objects have only one type of interconnection—

”method invocation.” It includes “architecture style” as one of its key ontological

concepts to define a “vocabulary” that links system “families” together. For instance, a

client-server architecture would be considered an architecture style. “Open and

interconnected systems” concepts seemingly extend the Acme software-based

components and connectors to include physical elements.

An instance of the architectural style is considered a base architecture (Rajhans et

al. 2014). A base architecture for a collision avoidance system is shown in Figure 25. It is

composed of multiple component types with multiple connector types appropriate to the

connector per the specified architectural style. Multiple views can be specified relative to

this base architecture to address various concerns. Architecture views shown (Rajhans et

al. 2014) included verification for consistency assessment and analysis for “quality

attribute” and trades assessment. This multi-view approach is considered an advantage

(Rajhans et al. 2014) over multi-model approaches such as Ptolemy II. Disadvantages

could be considered to be ecosystem support for a unique modeling language or

“unifying framework” and CPS systems that might also include more “architectural

styles” yet considered, such as large discrete event software and agents found in MIGVS.

 62

Figure 25. Base Architecture for Collision Avoidance System.
Source: Rajhans et al. (2014).

Unique CPS modeling languages need a way to define components and

relationships. A semantic framework for MBSE (Delgoshaei, Austin, and Pertzborn

2014) uses a unique scripting language to link software and physical components,

networks to model component relationships and can provide linkage with both to

requirements via a semantic structure at multiple levels of hierarchy. This enables an

integrated assessment of design concepts to satisfy requirements. It is not clear how well

this support human interpretation from multiple disciplines is supported, how well

intelligent components are addressed, or how well it addresses the interdependence of

requirements

CyPhyML has a concept of a “design space” (Neema, Scott, and Bapty 2015)

with multiple component alternatives. It also allows multiple domain models to define

components and other aspects of a more detailed meta-model. The DARPA Advanced

Vehicle Make (AVM) Program has defined a ground vehicle ontology and has looked at

how the basic concepts could be extended (Lynch et al. 2016) to other CPS domains. This

effort specifically aids the concept formulation and early systems engineering trade

assessment. It does not appear to address higher level behaviors and associated

 63

components nor does it enable object-oriented definition of discrete event software.

These could presumably be added to the ontology, but it is not clear what in the

“toolchain” is also required and how these unique environments are to be obtained and

supported. Certain ontological structures could be readily established, but defining many

types of relationships for a given domain prior to a development, may prove to be more

difficult and time-consuming.

Extensions and profiles to more general purpose modeling languages tend to

apply to the IoT type of CPS domain and their applications. A set of extensions to

address CPS “process” have been proposed to the Business Process Modeling Notation

(BPMN) 2.0 standard, referred to as “BPMN4CPS” (Graja et al. 2016). A CPS domain

specific modeling language (DSML) (Aziz, Wagar, and Rashid 2016) has been proposed

in terms of a meta-model implemented as a UML profile that enable its use with service-

oriented computing. Another effort proposes a UML profile using a goal-oriented

approach (Magureanu et al. 2010) “to handle the complexity of distributed applications

and applies it to a gas distribution case study. A “cognitive architecture for IoT”

(Sasidharan et al. 2014), to “conceal technological heterogeneity and provide services.”

This framework has a virtual object layer to enable lookup and registration of objects to

support service discovery. A shared ontology and a Semantic Big Data Historian (SBDH)

(Jirkovsky, Obitko, and Marik 2017) has been proposed to address and mitigate issue

associated with semantic data heterogeneity, considered critical for Industry 4.0 success.

b. Quality Attributes

To understand attributes in the context of the overall CPS literature, requires some

definitions. Attributes can be defined (Albus and Meyestel 2001) as “properties of an

entity” that are typically measurable or as a characteristic of a person or thing. Per Albus

and Meyestel, a characteristic can also be a behavior. Attributes that are measurable have

values that may or may not vary. Albus and Meyestel further define a state as a condition

or set of dynamic properties and a goal as a desired state of the world. It should be noted

that goal-based agents will alter their behavior based on their belief and their estimate for

achieving their goal state.

 64

Properties can be defined (Garlan, Monroe, and Wile 2000) as “semantic

information about a system and its components that go beyond structure” and are “extra-

functional.” Presumably then properties include all semantic information except for

behavior logic. Constraints are “claims” on architectural design that “include allowable

values on properties, topology, and design vocabulary.” Structure is defined as the

components and connectors and their topology or assembly. Structure consists of

components and connectors, where components are “computational elements” and “data

stores.”

In an actor-oriented language (Ptolemy II 2014), the “semantics is largely

orthogonal to the syntax, and is determined by a model of computation.” Per Merriam-

Webster: Syntax is a connected or orderly system: harmonious arrangement of parts or

elements and Semantics is the study of meanings. The actor model semantics include the

behavior logic and other properties that are provided via “parameters.”

Given the above similar but different views of semantics and properties,

the term quality attributes will be defined to include all system or entity semantics

except behavior logic and physical properties. Types of quality attributes include

(Barbacci et al. 1995):

(1) Performance

(2) Latency

(3) Throughput

(4) Capacity

(5) Modes

(6) Dependability

(7) Availability

(8) Reliability

(9) Maintainability

(10) Confidentiality

 65

(11) Integrity

(12) Security

(13) Safety

More quality attributes can be added to this such as the aforementioned predictability,

execution time, resiliency, modularity and (O’Brien, Bass, and Merson 2005):

interoperability, usability, scalability, extensibility, adaptability, and modifiability. Even

more attributes can be defined, combinations of other attributes can result in new attribute

terms, and some current terms may be encompassed in combinations of other current

terms.

Much of the literature (Khaitan and McCalley 2015) relative to quality attributes

focuses on the IoT type of systems and for embodiment design, and does not identify any

new quality attributes with the possible exception of cyber-security, though even that has

been a concern of “CPS-like” systems. They potentially are a guide to points of emphasis

and priority of quality attributes for CPS. A few examples include:

(1) Predictable and Reliable Performance—in particular the need to meet
deterministic timelines (Derler, Lee, and Sangiovanni-Vincentelli 2011)
or real time deadlines

(2) Cyber security—development of a context-dependent “role” security and
trust model for data sharing (Stumpf, Bures, and Matena 2015)

(3) Safety—an approach to switching logic to safely manage modes in
multi-modal systems (Jha et al. 2010)

(4) Modes—adapting the use of modes (Bures et al., 2016) as a “property”
of a component in a smart cyber-physical system (Bures et al., 2015) to
determine the best behavior in response to environmental uncertainty.

There are numerous other examples for these and other quality attributes.

However, though they need to be addressed, quality attributes are not a good organizing

principle for concept design. They are too numerous and somewhat nebulous when

separated from a particular system or application, and not always measurable. For a

domain like MIGVS, a certain priority can be achieved. For concept design, the priority

needs to be those that define the trade space and need to be integrated with critical

 66

structure and behavior. Both the system attributes and behavior cannot always be realized

through allocation of attributes components, but often need to be augmented with

additional components to meet the system attributes. Examples of this include nuclear

event detectors and cable lockouts, redundant components, and anti-virus components.

c. System Applications

CPS system applications include (NIST 2013) smart: manufacturing, grids and

utilities, buildings, transportation and mobility, and healthcare. Like with the design

techniques, most system applications (Khaitan and McCalley 2015) have emphasized the

IoT concerns. There are a few techniques for modeling local and cooperative behaviors

(Loos, Platzer, and Nistor 2011) and complex behaviors (Ahmadi et al. 2011) that could

apply to a MIGVS, but more as a behavior analytic technique than to model the system

architecture. Direct CPS ground vehicle system applications include electric vehicles,

autonomy and active safety, but are focused on an aspect of the system architecture and

its iteration with design than on the overall architecture conceptualization. This includes

an electrical and electronic (E/E) architecture and powertrain topology multi-layered

design optimization scheme (Lukasiewycz et al. 2012) and a “functional-level co-design

methodology” (Wan et al. 2017) to decouple architecture implementation and that

includes design space exploration. The latter, in theory can scale up to a complete system

architecture trade space, but reliance on functional and structured methods are likely to

encounter the same difficulties that software analysis and design encountered as the

behaviors become more complex, procedurally oriented, and data intensive. A base

architecture (Rhajans) for cruise control has already been discussed

A “hierarchical information architecture” (Jobst and Prehofer 2016) to address

vehicle CPS challenges for vehicles is shown if Figure 26. The intent is to organize

information flow within, between, and across layers. The layers are spatial, hierarchy of

control or behavior, and levels of information abstraction. It illustrates that within the

vehicle and its local behavior, is a complex CPS with a behavior hierarchy including time

and space relations, similar to 4D/RCS described previously. It also highlights the issue

of data heterogeneity and interdependence. However, it is not clear how the layers are

 67

meant to be integrated with each other and into the overall system architecture and

design: is it a view, a software architecture, or a design pattern? Further illustrating the

data heterogeneity issue relative to complex behavior, is a human interface and data

fusion architecture (Wagh et al. 2011) that fuses on-board sensed and network obtained

data to improve the driver’s perception and reaction. It may work quite well in

implementation, but it is a particular design architecture solution to a wider system

architecture problem and trade space.

Figure 26. Hierarchical Information Architecture. Source: Jobst and Prehofer (2016).

C. SUMMARY

Most previous architecture and system modeling related research that can apply to

military ground vehicle systems have not begun to incorporate the research and concepts

emergent in the CPS domain. The interdependency of the cyber element and physical

element within military ground vehicle systems has been increasing as had been the cyber

dimension overall. Specific and formal techniques to address the interdependency,

particular in concept design and trade space assessment, have not emerged or kept pace

with advances in physical modeling. Most CPS and CPS-like architecture practice and

research is focused on support of computational design, a distributed IoT type of system,

or a particular slice of an application domain logic. Each of these research focus areas

lack at least one or more dimensions critical to architecting systems in the MCPS and

MIGVS domains. The critical dimension areas are: concept design, consideration of both

cyber and physical components within an integrated trade space, intelligent aspects of

control and behavior, sufficient use of hierarchy to manage complex behavior.

 68

A focus on architecture to support CPS computational design is certainly needed.

However, research in this area does not provide much indication of how it functions

within a larger system or enterprise, where requirements for the CPS computation design

originate, and how trade space analysis was conducted for both cyber and physical

components so as to understand capability relative to cost and other constraints. This type

of analysis needs to take place in a multi-disciplinary environment and then provide the

appropriate concept baseline for embodiment and detailed designs. Multiple other types

of design, such as 3D CAD design, need to be supported from a system concept baseline

in addition to the computational design. The computational design research needs to be

understood however to understand how best to inform it from the system concept

baseline.

Architecture and modeling research for IoT types of systems mostly assume a

very distributed network with a plethora of directly controlled devices by Internet

applications. This in turn assumes a relatively flat control hierarchy. This is contrary to

some research on smart and/or autonomous systems that utilize several layers of control

above the direct control of sensors and actuators. The hierarchy of control not only

reflects a hierarchy of behavior, but of different types of behavior, or at least different

emphasis of behavior types at the various levels. Some IoT research has addressed some

high level or relatively intelligent behavior, but it is reflected as workflows or services to

be managed by humans or in a single application layer. The IoT research also does not

address all the constraints introduced by a MCPS, though some effort has been focused

on addressing a dynamic environment or context awareness. These approaches are also

likely to be limited relative to the most dynamic aspects of the environment if managed

by a distributed Internet-like network with distributed applications acting as a single layer

of control.

Research in the application domains of large non-mobile infrastructures and/or

controlled external environment do not address the full range and interdependency of

multiple forms of logic, performance, and constraints identified for the MIGVS domain.

CPS research for ground vehicles systems that rely on supporting transportation

infrastructure or niche areas, such as hybrid electrical control design, do not address

 69

military unique aspects of the MIGVS domain. These include the operator or intelligent

interactions and control, the wider range and complexity of the dynamic environment,

and the range of constraints required for integrated concept design and an integrated trade

space.

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

III. AGENT AND OBJECT ORIENTED MODEL-BASED
CONCEPT DESIGN FOR MOBILE CYBER-PHYSICAL SYSTEMS

The system behavior logic is modeled as a set of abstract classes and objects that

have an internal behavior and that interact with each other as well as the external

environment. The higher level system behavior is determined by the object interactions.

The behavior logic transforms the entire set of system inputs to the entire set of system

outputs subject to the system and component properties and constrains. A system with

intelligent behavior is a context aware or smart CPS. It can perceive external events

through its input, decide which behavior is required, and assess whether its output has

produced the necessary effect. It can then decide what further action or behavior is

required and execute that behavior consistent with its design and constraints. As such,

special emphasis to how the context is modeled and understood by specialized objects,

called agents, is critical to the system architecture and trade space.

The following terms and definitions are considered fundamental and critical to

describing a system architecture and will be utilized throughout:

(1) System Syntax—a set of components and connectors, their arrangements,
structural relationships, and their abstractions. A system syntax can have
multiple types of abstraction for multiple types of arrangement or views.
For example, a system can have logical abstractions focused on the
interaction and behavior of components, and physical abstractions
focused on how the same components are physically assembled.

(2) Components—are the physical elements of the system to include
software and hardware. When physical components are realized as a
particular physical instance of a generalized abstraction, they will be
referred to as objects.

(3) Connectors—represent the interactions between components (Garlan,
Monroe, and Wile 2000) and their abstractions. Connectors may
represent physical instantiations or logical abstractions not distinctly
identifiable from the components they are associated with. Connector
abstractions will be defined as ports.

(4) Interactions—the exchange of energy, material or information between
components and the external environment and/or between components

 72

themselves. The components associated abstractions can have abstract
interactions. Interactions are conveyed through connectors or ports.

(5) System Semantics—is the meaning or purpose of a system and its
components/connectors beyond its syntax or structure. It consists of
behavior logic and properties.

(6) Behavior Logic—a set of interactions of a system or component over
time. Execution of the logic at a point in time is dependent on the
specific incoming interaction and the value of the properties at that point
in time. Behavior relates to a system and component’s purpose or
functionality.

(7) Properties—consist of physical attributes and quality attributes that
typically have values or a range of values.

(8) Physical Attributes—symbols and their values that pertain to the
geometry, mass or other physical aspects of a system, component or
physical connector.

(9) Quality Attributes (QAs)—non-physical attributes that further specify a
system, component or connector, their behavior logic and the behavior
logic’s execution. QAs of focus in this research include performance,
reliability, information/data and world/goal states.

(10) Constraints (Garlan, Monroe, and Wile 2000)—”claims” about a system
or component’s syntax and semantics “that should remain true over
time.” “Typical constraints include restrictions on allowable values of
properties, topology and design vocabulary.”

The concepts to be discussed are generalized and defined independent of a

specific modeling language as much as practicable. Key concepts are expressed as

“reference models” that can be instantiated and elaborated for a given system or project.

Given the emphasis on modeling and systems, SysML will be utilized where required for

concepts that have more intricate semantics and syntax, such as objects that have

generalization and aggregation relationships. This is due more to its ready availability

than its advantages or disadvantages as a modeling language.

A. MOBILE CYBER-PHYSICAL SYSTEM LOGICAL STRUCTURE AND
BEHAVIOR CONCEPTS

Figure 27 shows the Mobile Cyber-Physical System (MCPS) Architecture

Concept Data Meta Model (DM2). This model captures the critical concepts and relations

 73

required to model the behavior of a MCPS, and is defined so as to enable a direct

compare and contrast of the DODAF concept DM2 of Figure 4 and its critical concepts.

Figure 27. MCPS Architecture Data Meta Model

Figure 27 shows that the world is composed of instances of real-world things or

entities called objects. These objects have state and can be grouped into a system or into

the context (i.e., objects that are relevant to but not “part” of a system). System objects

are performers that have behavior and interact with each other and context objects to

detect and effect state needed to perform missions and achieve goals. System objects that

directly detect or effect context state are typed as sensor and actuator objects. They are

controlled by other system performer objects which include agent performer objects, a

type of object whose behavior is driven by its current or believed state of the world

relative to its goals or goal states. Context objects can have intrinsic time-varying

properties and/or static properties that time-vary relative to an MCPS due to its changing

physical proximity. Context objects also include Payload and Operating Resource, two

types of objects that are not “part” of the system, but are at times physically located

within the system boundary.

 74

Comparing the DODAF DM2 model of Figure 4, there is virtually no

consideration of the context versus an explicit model of the context as means of modeling

external events and effects that the system must react and act upon as well as track the

state of context objects. The context is a required as part of the architecture concept data

model as well as required data used by the system. An organization is potentially just one

type of object in the context that interacts with the system. Activities and services are

types of behavior that may or may not be utilized by the system. Rules and conditions can

be incorporated as mission goals or a kind of limit or tolerance on mission goals. Physical

location is always important, but geolocation or location referenced to the world may or

may not be. Information and material are augmented by energy and represent externally

supplied operating resources to the extent they are of interest to the system and its

architecture. Material is also a type of Payload. Finally, capabilities are the missions and

goals that the system performer objects are capable of performing and reflect the desired

state of a resource, but most distinctly the desired state of the context or its state relative

to the system.

1. System Performer Object

Any component or part of a MCPS can be classified as a performer object. All

technology can be thought to have an executable (Arthur 2009), even something as

seemingly static as a bridge or a support beam. An executable is one way to view a

behavior. Technology is built to a purpose or mission, and if it meets its design semantics

or purpose, it has executed effectively. A computation or computing technology

represents only one form of executable. A human operator can also be considered an

executable. Conversely, things that seemingly represent only an executable, such as

software, can also be thought of or modeled as a certain form of technology or physical

entity. Each technology as applied to a system can be viewed as a component at various

levels of abstraction that have behavior and interactions and particular instances that are

system objects. System objects can be distinguished by the nature of its executable and

the nature of its interaction.

 75

Figure 28 shows a general model of a system performer object. A system

performer object is an abstraction of a component that can interact with the external

environment and/or other system objects via connectors or ports; where the interactions

involve energy, material or information, where the interactions are directional, and where

the object has identity, behavior logic and state. The object behavior at this level of

abstraction is a model of its executable. As such, it can be an abstraction of a software

object similar to objects in software OOAD except that it does not necessarily invoke a

method. It can be an abstraction like an actor model communicating with messages

except the behavior is not necessarily polymorphic, or it can be an abstraction of any

physical component that interacts via energy or material. The term system object is

utilized because of its close association with real-world things.

Figure 28. General System Performer Object Model

Performer objects can be grouped and arranged in a hierarchy to address

complexity. This logical object hierarchy, like social hierarchies, are grouped by

interaction rather than spatial proximity (Simon 1962). System Performer Objects are at

the top level of this hierarchy and can be recursively decomposed into sub-performer

objects or even sub-sub-performer objects. As Simon explains, objects within the same

hierarchical group interact more than objects in different groups. Objects that do not or

minimally interact with each other would have different “base” system performer objects.

 76

The MCPS domain can be divided into two types of sub-performer objects: active and

resource. These two types of sub-performer objects will aid in creating patterns across

performer object classes.

Active performer objects can alter and intelligently assess their impact to the

context. The impact and sensing of the context is subject to computational control for the

MCPS domain. The MCPS domain has at least a two level hierarchy of computational

control: cyber-physical and intelligent. Intelligent control computation can itself has

multiple levels of logical or cyber hierarchy depending on the complexity of the system.

Active performer objects are defined as follows:

(1) External Sensors/Actuators—objects/components that exchange energy,
material, or signals between the system and the external environment.
Sensors convert “stimuli” (Poole and Mackworth 2010) from the
external environment into information and actuators that convert
information into actions to the external environment, these actions can
include signal transmission. Similar objects that do not interact with the
external environment are categorized as part of various system
resources.

(2) Direct Sensor/Actuator Control—objects/components that provide direct
control or first level hierarchical control of external and internal sensor
and actuator objects/components. This control is based on position
feedback of the sensor/actuator and is not based on any context
awareness. Component types include servos, regulators, feedback
control, etc. Note that external sensors may have direct control that
includes feedback in addition to its primary purpose of providing
information about the external environment to higher level performer
objects.

(3) Agent Logical Object—an agent as an object/component requires
extensive discussion and is addressed subsequently.

Resource objects/components address certain constraints introduced by the

mobility of an MCPS and/or limitations of engineered systems. Resources must address

these constraints and provide support to other components that require the resource. The

types above are consumers of one or more of the resource sub-types. Interactions,

connectors and ports reflect the types of resource exchanged. Resource objects are

defined as follows:

 77

(1) Physical Structural Support and Protection—objects/components that
provide primary and secondary structural support to all system
objects/components as well as protection against the direct effects of the
external environment. Component types include mounts, brackets,
glacis, walls, and electronic chassis’ or bays.

(2) Power and Energy—objects/components that generate, transform, store,
and/or distribute power or energy to components that consume it and
that provide the prime automotive force of the mobile system.

(3) Material Support—objects/components that generate, transform, store or
distribute material required by other objects/components. Relevant
material in an MIGVS can include fuel, oil, and ammunition.

(4) Information/Computation—objects/components that generate, transform,
store or distribute information required by object/components.
Component types include computers, computational stacks, application
software support, networks, and resource access firmware.

From a behavior logic standpoint, both active and resource object types

encapsulate a behavior executable that interact logically through ports with each other

and/or the external environment to comprise the entire system behavior logic. Again,

even structural objects have a behavior logic, though perhaps not as dynamic as others.

The logic of a structural support will be determined by its reliability (e.g., working, not

working, degraded), and could be relatively dynamic if one considers time-dependent

reliability. All performer objects have measurable behavior based on the time-varying

change in values of its state attributes. These state attribute values change based on the

interactions of performer objects with each other and the objects in the context.

Interaction types are categorized as follows:

(1) Energy—interactions that provide or dissipate power, generate or absorb
a force, support an equilibrium or provide a signal.

(2) Material—interactions that support the exchange of a solid, liquid or
gas.

(3) Information—interactions that support the exchange of data,
information, or knowledge.

Energy and material interactions between two objects are direct and of the same

type, though the energy/material may be transformed to a different type by the object for

 78

a direct interaction with another object. Information interactions however can be viewed

as having two types:

(4) Direct logical interactions this is an abstraction of a direct and same
type of interactions. Certain objects can transform the information from
one type to another to facilitate some end objective, such as signal to
data transformation by a device driver.

(5) Indirect logical interactions are like representations of information
indirectly exchanged between a source and a consumer, such as between
two software applications.

Objects that exchange information need to support both these types of exchanges.

2. Context Object

As indicated in Figure 2, a MCPS interacts directly with its external environment

through signal, material and/or energy and interacts indirectly through information

exchange. Consideration of the system, its boundary, and its direct interaction with the

external environment or its context, is an important and typical consideration within

systems engineering. However, as indicated in Figure 27, a MCPS with a cyber hierarchy

that has indirect logical interactions with the Context, understanding and modeling that

Context takes on much greater importance. How well or whether the correct behavior

gets executed by a system is dependent on the accuracy of the information relative to the

context.

The traditional view in systems engineering is that the system’s context or

external environment drives system inputs and is subject to system outputs. The systems’

behavior logic translates the inputs into outputs. This is still the case for a MCPS, except

that there is a wider thread of behavior logic the intelligence of the system has to address,

namely event to effect. Events are a change in world state that can cause the system to

execute some appropriate behavior when perceived by the system. Effects are a change in

world state actuated by the system consistent with some goal or purpose. A MCPS must

detect events and assess the success of failure of “desired” effects in the context or

external world. A standard control system by itself is not aware of events and effects in

the context, but rather reacts to an input from with the system, couples it with knowledge

 79

of the plant that is controlling, and produces a new output to control the plant. The

control system is not aware of the effect that the new output has produced. An intelligent

system, responds to an event in the context and produces an effect in the context and then

determines whether that effect was satisfactory.

Defining the world in objects and interactions enable focused reasoning about a

limited portion of the world state relevant to given problem. It is not practical (Poole and

Mackworth 2010) to reason about the world in terms of all possible states, there are too

many. However, the state of the world can be abstracted, particularly for concept design,

to a set of things or objects, each with a set of attributes, that when defined can be

considered the relevant state of the world. The first abstraction is to divide the world state

into the system and its external context. As previously discussed, the system can be

defined as a set of performer objects, each with a set of attributes. The system’s state is

the set of objects with all its attributes defined at a given moment in time.

Correspondingly, the Context can be defined as a set of objects with attributes that

change state, at least relative to the system. As a domain, there may be set of top level

classes that an MCPS might always need to address (e.g., terrain). These classes can be

further decomposed into lower level classes or objects along with lower level but related

attributes as needed (e.g., roads with lane attribution like marking type, color etc.).

3. System Connected Object

A System Connected Object is context object that can be stored, housed and/or

used within or at the system boundary. There are four types of MCPS System Connected

Objects:

a. Operating Resource

An operating resource is an object that used by the system in its operation. It is

not a “part” of the system, but is necessary to its operation and the capacity to carry the

resource is part of the system. There is generally a way to bring an operating resource

into the vehicle and store until it is needed. It is generated in the context and then

consumed in use.

 80

(1) Physical. Physical abstraction is introduced here so as not to bias the
solution for MCPS concept design. For example, a gasoline powered
engine would use material whereas an electric vehicle would use energy.
This can be abstracted to a Physical object with an attribute of operating
range until the specific technological approach is selected.

(2) Material. A material store object, like a material interaction refers to a
gas, liquid or solid. Examples include fuel, oil, and ammunition.

(3) Energy. An energy store object is purely an abstraction object and will
not be elaborated for concept design. Once a technological solution is
established, the energy object is likely to show up as an attribute of
another object (e.g., battery charge).

(4) Information. A Context information object is externally generated
information provided to the system for its use. Examples include maps,
precision geolocation, and information about the Context beyond the
system’s sensors.

b. Payload

A Payload Object is defined here as an object that a MCPS carries during or as

part of its operation and that is not part of the system or in any way consumed by the

system.

(1) Person. A person object is a human on-board the system that must be
physically accommodated or carried aboard the system.

(2) Operator. Operator(s) must be physical accommodated so as to be
capable of operating the system.

(3) Passenger. A person object not directly involved in the operation of the
system (e.g., infantry squad).

(4) Cargo. Cargo is an object that the system is specifically designed to
carry and can be endemic to the system mission (e.g., a dump truck). It
also includes personal equipment need by any operators or passengers of
the system.

(5) Operating Resource Augment. These objects are the same as Operating
Resource Material Objects (e.g., fuel, oil), but are not part of the
systems’ design capacity. An example would be extra containers of fuel
stowed somewhere aboard the system.

 81

c. Person/Person Role

Person Object can both be defined as a payload and in terms of its role in the

operation of the system. Any operator of the system should have attributes of both these

classes. However, in the initial concept design of a MCPS, the operator as a person

should not be presumed but rather included in the trade space for final concept design.

The person role will be accommodated by agent roles and agent logical objects and

addressed subsequently.

d. Tactical Network

The tactical network is an external object consisting of at least one physical

channel. An MCPS by definition can be thought to connect to at least one external

network via an embedded network interface. External networks can control, guide, or

augment the operation of the system, support system test and diagnostics, and/or support

system upgrades.

4. Mission/Tasks/Desired Trajectory/Goals

A goal is a desired future state of the world (Albus and Meystel 2001). Albus and

Meystel distinguish between two types of goals relative to behavior: 1) maintain a system

relative world state over time or 2) achieve a change in that world state. A goal is a

physical world state or knowledge state to be achieve or maintained for a given time.

Albus and Meystel further define a reference trajectory as a set of goals along a timeline.

Here a reference trajectory will be referred to as a desired trajectory and defined as a

desired path through a given state space beginning with an initial state and culminating in

an end goal state. A trajectory is any path through a given state space. The state space is

the set of possible attribute values of a set of one or more System Performer or Context

objects. A desired trajectory as a minimum has an initial state and an end state, but can

also reflect multiple interim goals and can be recursively decomposed into low level

desired trajectories as shown in Figure 29. Goal 1 reflects the initial state and Goal 2 the

end goal state for the sub-trajectory.

 82

Figure 29. Hierarchy of Goals and Reference Trajectories

The goal definition for both Achieve and Maintain goals need to be definitively

specified if the intelligent behavior is to be executed by machine. A goal specification is

defined as a canonical set of goal measures for a well-specified goal. The a goal is

specified expressed in terms of four measures and two value functions as shown in Table

2. Each type of goal has both a time and state target, a time and state tolerance relative to

the target, and value functions that compute the loss of value as actual time and state

measures vary from the assigned target. The value functions shown in Table 2 are based

on a normal probability density function (PDF) for an achieve goal and an exponential

cumulative distribution function (CDF) for a maintain goal. These distribution functions

are notional and actual distributions could be defined experimentally and augmented with

constants.

 83

Table 2. Achieve and Maintain Goal Measures

Measure Achieve Goal Maintain Goal
tTar Assigned time to achieve or

complete
Assigned time to maintain

tTol The acceptable variation around
tTar.

The acceptable variation around
tTar.

fv(t) The value loss around tTar
computed as 𝑒𝑒(−(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2) where tAct is actual
current or completion time

The value loss around tTar computed
as 𝑒𝑒(−�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
�) where tOutSt and

tInSt are the total time out of and in
state, respectively

sTar Assigned target state measure. Assigned target state measure
sTol The acceptable variation around

sTar.
The acceptable variation around
sTar.

fv(s) The value loss around sTar
computed as 𝑒𝑒(−(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2) where sAct is actual
current or completion state

The value loss around sTar
computed as 𝑒𝑒(−�(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�)

where sAct is the average,
cumulative or current state over a
maintain time interval

Tolerances can be expressed as state and time variables or as a measure relative to

a target of one. For complex state variables (e.g., a list with many items), it may be more

convenient to express the target as a composite value of one with a separate state

equation comparing the target list to an actual number of items in a distance function.

Also, a maintain goal may be expressed without a time value since the desired state is to

be maintained for an indefinite period of time or until the system is commanded to do

pursue a different goal. However, the time in state versus out of state may impact its

overall end goal state satisfaction. In this case, the goal is to always maintain with a value

of one.

A desired trajectory or behavior with a goal is unlikely to exactly fail or exactly

succeed. The behavior has a loss of value to the degree that goal state and time targets are

not met. A behavior in response to a desired trajectory can be deemed a failure by a

 84

superior agent based on the loss of value, such as an actual time or state beyond the

specified tolerance. A decision at that time may be made to proceed with the mission,

alter the mission, or abort. A deemed failure to meet a goal may require a special

classification when compared with hardware failures and standard concepts of system

reliability (e.g., “essential task soft failure”) as compared to an essential function failure.

From an overall requirements standpoint, goal requirements can be listed as narrative

with other system functional requirements. The goal requirement narrative would identify

standard state and time targets, standard state and time tolerances, and ideally include an

agreed to loss of value function. However, actual failure would be determined

dynamically based on mission conditions.

As indicated, a goal can express a desired physical state or a desired knowledge

state. The goal of certain military missions and tasks is to acquire some state of

knowledge. Knowledge state is defined as the current state variable values of events and

situations. An event is defined as a temporal occurrence of interest or discovery of an

object’s attributes and a situation is defined as “a relationship that exists between entities

and events in space and time” (Albus and Meystel 2001). For example, an earthquake is

an event, but someone at the top floor of a twenty story building at the epicenter, is a

situation. Events themselves can object attributes that are static, but are of temporal

interest to a system, particularly a MCPS. A knowledge goal is the determination of the

state; that is, the desired state of knowledge is to know the state rather some particular

state. The same goal specification measures can be used, though the detailed expression

calculation may be different.

A mission reflects the fundamental or overarching purpose of the system. A

mission is defined as an ordered set of tasks. A task is defined as a set of trajectories.

Most if not all MCPS are designed to achieve some effect in the environment as its

overarching purpose and can be considered to be the mission effect desired trajectory as

its object identity. However, most MCPS also have constraints on safe and reliable

operation as well as constraints on its operating resource usage. These constraints can be

defined as desired trajectories over the same mission trajectory timeline as notionally

shown in Figure 30. The advantage of viewing these explicit desired trajectories relative

 85

to the mission is that the goals constraints can be adjusted to reflect different rules and

conditions. For instance, a critical mission of moving a passenger to a hospital emergency

room can be weighted more heavily by allowing more leeway to the goal constraints of

safe operation. The operating resource and operating desired trajectories can be

generalized as normal or disciplined operation desired trajectory. Many more of these

types of trajectories could be defined.

Figure 30. Notional Mission Trajectories Graph

The system and context or world objects/attributes of the mission and all its

trajectories reflect the entire world state of interest to the system and can be executed

concurrently. The trajectories may or may not share world objects of interest or a

particular subset of the overall state variables. The actual direction of trajectories shown

in Figure 30 are notional and merely reflect that the state variable change values in a

particular way of time. Additionally, there is a third type or class of trajectory not shown

that can be defined as exception handling desired trajectory. These can be explicitly

defined as abnormal or “non-sunny or rainy day” operation and have goal constraints that

can be adjusted as needed within design constraints to reflect different rules and

conditions. For example, an intelligent ground vehicle system needs to detect dynamic

 86

obstacles in the context and take proper action. Once a dynamic obstacle has been

detected, the appropriate action may vary depending on its risk to the overarching

mission effect.

Mission composition of mission effect, disciplined operation, and exception

handling desired trajectories and their goal specification measures, define the measures of

effectiveness (MOEs) and measures of performance (MOPs) for the system. The

trajectories can be further typed and decomposed. The corresponding decomposition of

world objects, state attributes and goals result in a hierarchy of MOE/MOPs. The system

and context objects can be decomposed as needed along with the corresponding state

space and be defined as a world state model. The world state model will reflect a set of

attributed data objects for concept design. The system’s assigned and derived missions

will selectively reference the data objects from the world state model and constrain their

attribute values as needed to meet goals. The goals are much like use cases except they

do not presume an operator and are embedded in the concept design of the system.

5. Agent Logical Object

Agent logical objects (ALOs) are system’s objects capable of intelligent behavior.

An ALO is capable of perceiving its environment and achieving or maintain an effect

in the environment (Russell and Norvig 2003). Like other system performer objects,

ALOs have a set of interactions, a behavior logic, and a set of state attributes. Also like

other performer objects, agents have identity and represent a solution independent

abstraction of some physical element or technology. In this case, an ALO represents an

abstraction of intelligent logic that can be realized by person’s brain, application

software, or a technology like a neural net. It is independent from, but requires

integration or transformation access (e.g., some direct logical interaction path) to some

type of compatible computational execution engine framework (e.g., a computer for the

application software). ALOs can be aggregated along with computers, control systems,

and sensors/actuators to form embodied physical agents, can be realized as distributed

software, and/or can be physically realized by a person.

 87

As shown in Figure 31, ALOs logically interact via commands and percepts.

These are indirect logic interactions (e.g., application to application). They logically

interact only with other ALOs or sensor/actuator controllers and execute within an

application control hierarchy. They receive commands from “superior” agents or agents

that are higher in the control hierarchy, and issue or generate commands to subordinate

agents. Conversely, they issue or generate percepts to superior agents. Each ALO has a

world state of interest composed of entities/attributes that reflects the world state model

discussed previously. The current value of the attributes reflects the ALO’s belief state.

The goal state is composed of a set of constrained values on the world state space ordered

into trajectories that reflect the assigned and derived missions discussed previously. The

ALO behavior logic considers the belief state relative to the goals state and takes

appropriate action.

Figure 31. Agent Logical Object (ALO) Pattern

The ALO high level internal behavior is shown in Figure 32. The behavior block

executes on the data in the goal and world states. The agent behavior processes command

from the superior agent and generates commands to subordinate agents required to meet

the command. It receives status back from subordinate agent percepts and provides its

 88

collective status up to the superior agent. The superior agent command has an assigned

mission with a set of trajectories which in turn has a set of goals. The goals constrain a

set of world state entities to desired values. The ALO updates its world state based on

subordinate agent percepts and compares it against its overall goal state. Based on the

delta the agent can decide if any new behavior or subordinate commands need to be

generated. Regardless, it reports its current state up to the superior agent. If the ALO is

realized by machine, the world state model and the goal constraints would represent

logical data stores and would be incorporated into a concept data model for the system.

Figure 32. ALO Internal Behavior

The indirect logical control and interaction topological pattern of ALO’s for a

MCPS is shown in Figure 33. This pattern begins the formulation of each ALO’s identity.

The general behavior pattern above is repeated for each of the ALOs. The ALO types in

this hierarchy are defined as follows:

 89

(1) Mission Agent (MA)—controls the overall mission or operation of the
system. It initiates, orchestrates and terminates the top level tasks or
trajectories. If connected to a larger network or systems of systems it
will also respond to commands to a superior agent and provide percepts
to that agent.

(2) Task Agent—executes the top level task or trajectories. Responds to
percepts with world state information from one or more detection agents,
determines an appropriate course of action, and generates a command to
a single intelligent control agent.

(3) Detection Agent—interprets world state from data received from sensors
and sends percepts to its higher level task agent. Detection agents are the
primary means for directly interpreting information about the state of the
world. The number of detection agents will correspond to the different
types of sensors needed to determine various unique aspects of the world
state. The detection agents control the sensors as required to detect the
world state.

(4) Intelligent Control Agent—responds to commands from the task agents
and issues the necessary set of coordinated commands to the systems
actuators. This is the primary means to bring about an effect in the
external environment or change to world state. There is a single ICA to
insure all control systems receive a coordinated set of inputs.

Figure 33. Agent Logical Control Hierarchy

 90

For a U.S. Army MIGVS, the mission plan is a highly detailed and coordinated a

priori plan through the entire mission timeline. It has an overarching purpose, but also

many “disciplined operation” trajectory type tasks or rules as well as belief state

information about the context. Discipline operations examples include following a route

plan, maintain situational awareness, and proper communications. Each ALO in the

hierarchy would have some portion of the mission plan assigned and would also have to

decompose the plan into sub-trajectories and/or sub-goals. Assuming the plan does not

change during the mission, the ALO percepts are reporting on the status against their

portion of the mission plan and the mission ALO reports this back to the unit or task

force commander. This does require identifying which part of the plan is currently active,

hence both trajectories and goals can be considered to have a state.

The task agents, and the detection and intelligent control agents in particular, not

only have perform as appropriate to the a prior plan, but also have to dynamically plan to

meet dynamic events. There are two types of dynamic events that must be considered.

Unplanned events are dynamic events that may interrupt any given desired trajectory, at

each temporarily. Each ALO must be able to handle a finite set of exceptions to some

performance standard or goal, and then be able to plan and execute a recovery to its

original plan or dynamically adjust to a newly assigned desired trajectory or goal

changes. Unplannable events are dynamic events that do not necessarily interrupt the a

priori reference trajectory, but cannot practically be planned prior to execution. They are

dynamically planned during execution and then executed within the desired trajectory

timeline. Basic vehicle movements for instance cannot be practically planned prior to

beginning a mission.

To complete the ALO identity, each ALO must be assigned a person role and a

place within a top level system performer object. Humans perform multiple roles where

each role has an overarching purpose. For each given purpose, a human will execute a set

of behaviors that will at least have some unique aspects to it, though a given behavior can

correspond to multiple roles. A role is defined as an overarching purpose that has an

associated set of intelligent behaviors that will execute in response to external events or

stimuli. A different role may execute behavior differently to the same event or stimuli. A

 91

given agent logical object corresponds uniquely to a given role. In terms of component

realizations, their “physical reality” can correspond to application software or to a kind of

human instance performing the logic of that role. The sensors and actuators then

correspond to human parts such as eyes, ears, arms, legs, etc. The agents in the hierarchy

are defined to a relative granular level in order to detail and organize the application

hierarchy in a standard and repeatable way and to understand the information

dependencies.

Person roles and top level performer objects will be domain dependent. Person

roles in the MIGVS domain include commander, gunner, driver, and various mission

specialists. The commander can perform many roles and would be responsible for many

tasks or desired trajectories as well as the overall mission. The mission agent would be

assigned a commander person role. The gunner and driver are more specialized. The

gunner can be related to Lethality as a top level performer object (i.e., it groups all the

objects required to execute lethality, including an ALO hierarchy with a Gunner Task

Agent the top of that hierarchy). By definition, a MCPS will have a driver person role

linked to Mobility has a top level performer object. It will have an ALO hierarchy with a

Driver Task Agent at the top.

As mentioned previously, for the logic of an agent to actually execute and interact

with other agents in a system, an execution means is required in the form of a

computation (e.g., brain, computer, neural net). Given the nature of a MCPS as described

herein, a significant portion of the combined set of ALO computation should be assigned

to a machine/computer. This computation can be described in terms of a “stack” as

shown in Figure 34. Information flow can be understood to flow both vertically and

horizontally through and across the stack. “Conceptually, the data moved horizontally

and vertically is the same” (Shames and Sarrel 2015). As Shames and Sarrel indicate, the

vertical flow can be thought to be a “transformation” of data or information. The logical

interactions described thus far, can be thought to flow horizontally in the end-to-end

execution of a behavior between interacting agents or like objects. This is the desired or

objective behavior. However, the information flow actually goes through potentially

many transformations up and down the stack before arriving in the proper form in its

 92

destination. This occurs whether an agent has its own computational stack or shares one

with the other agent. These transformations impact the timing of the end-to-end behavior

as well as introducing the potential for errors, delays, etc. If standard or common

information support software to support the ALO is desired, this can add further

complications to the stack execution.

Figure 34. An Agent Computational Stack

A solution independent model would not require much detail relative to how

specifically the vertical transformations happen. It would require knowledge and

understanding that the horizontal flow or indirect logical interactions must be supported

by the vertical transformations and they do not occur instantaneously, without cost or

without some failure. The ALOs could be thought to “logically” execute on a single stack

and its physical realization as a single assembly or an assembly for each ALO or

something in between, would be part of the trade space required to finalize a concept

design. The key would be to understand the vertical transformation MOPs and their

relation to the horizontal MOPs and MOEs. By implication, the ALO hierarchy is also a

 93

computation hierarchy linking eventually to the physical-mechanical behavior of sensors

and actuators.

6. System Behavior Thread

A system behavior thread is defined as a singular horizontal path of an event,

input, internal behavior logic, output, and then effect. An event was previously defined as

a change of state in the external context that results in a system input. An effect was

previously defined as a change of state in the external context caused by the system

output. An input is defined as the system import of energy, material or signal/information

and output is defined by the system export of energy, material or signal/information. The

internal behavior logic can be as simple as the behavior of a single logical object or as

complicated as a combinatory set of object behaviors with many object-to-object

interactions. The system logical behavior is defined as the unconstrained combination of

all threads. Agent logical object behavior and their interactions comprise the system

intelligent logical behavior and is the combination of all intelligent behavior threads.

A system behavior thread is illustrated in Figure 35 for a single task ALO and

below. The task agent receives a command from the Mission ALO. One or more

detection agents detect events as state change in the external world or context. A single

intelligent control agent’s coordinated response through multiple controllers of actuators

generates an effect or desired state change of the world. This event-effect “control loop”

can repeat as needed until the desired effect is achieved. As defined previously, agents

are just one type of system object and agent interactions just one type of interaction.

ALOs interact with control system objects and they in turn with sensors and actuator

objects. From a hierarchical behavior control standpoint, agent interactions to

sensor/actuator control have been defined previously to be indirect logical interactions.

The control system interactions with sensors and actuators take the form of signal energy.

The interactions between the sensors/actuators with the world can take the form of energy

or material, though only energy is shown for simplicity.

 94

Figure 35. System Behavior Thread

The behavior thread then is that complete horizontal flow of indirect logical

interactions to signals to events/effects and back again. This is supported at the upper

levels by the vertical (Shames and Sarrel 2015) flow described previously. Just as the

vertical flow represents the transformation of information, the horizontal flow represents

its distribution. The concepts of transformation and distribution can be extended to

energy and even material interactions. Not shown for simplicity is the control of the

sensor. The detection agent would execute control commands as needed to get the

information in a desired condition.

In summary, an ALO as application logic is similar to an application object as

practiced in software OOAD and can be compared and contrasted, as shown in Table 3.

 95

Table 3. Software Object and ALO Comparison

Comparative
Item

Software Object
(Booch et al. 2007)

ALO

1

A function is “an input/output
mapping as a result of some
objects behavior.

A task or intelligent function is an
event/effect world mapping as a
result of some ALOs intelligent
behavior

2

An object “has state, behavior, and
identity.”

An ALO has state, intelligent
behavior, and identity.

3

State is “the cumulative results of
the behavior of an object”

State is the desired results or goals
of the ALO’s behavior relative to
its current understanding of the
world.

4

Behavior is “how an object acts
and reacts in terms of state change
and message passing”

Intelligent behavior is how an ALO
acts and reacts in terms of state
change and message passing
relative to its goal state

5

An operation is “some work that
an object performs on another in
order to elicit a reaction ….
message, method and operation
are used interchangeably.”

Message passing consists of
commands and percepts and do not
invoke a method, imply a transfer
or singular thread of control, or
provide a direct reaction to the
sender.

6

State space is “an enumeration of
all possible states of an object”

State space is an enumeration of all
possible world entity attribute
values of an ALOs world state
model.

7

“The role of an object denotes the
selection of a set of behaviors”

The role of an ALO denotes a
unique set of intelligent behaviors
that form its identity.

B. SOLUTION INDEPENDENT MCPS OBJECT ORIENTED BEHAVIOR
CONCEPT DESIGN

To sufficiently capture the complexity of the solution independent objects,

behavior logic, attributes, and interactions, as well as their integration into behavior

concept design, a modeling language is needed. No modeling language provides the

 96

syntax and semantics to directly model agents, components or physical object

abstractions, physical and computational behavior, and data. SysML is selected as the

modeling language that can best be leveraged. This is not meant as a modeling tutorial or

to be an expert application or use of SysML. Key to its use here are the following

features:

(1) It is the most commonly used modeling language for systems
engineering. It is a descriptive visual language that supports certain
object oriented techniques.

(2) The concept of a block provides the flexibility to model any structural
type, to include complex data structures and complex context. It
supports structural relationships such aggregation/composition,
generalization/specialization and inheritance.

(3) It can model a variety of connector and interaction types. Proxy ports
can be used to represent connector abstractions and then typed by
interface blocks. It can be used to represent both horizontal and vertical
interactions.

(4) General and descriptive modeling behavior techniques that can be
incorporated into blocks or objects. It will support object oriented
decomposition from various class types and then definition of behavior
via leaf level classes or objects.

1. MCPS Domain Structural Model Concepts

As shown in the MCPS Architecture DM2 in Figure 27 and with consideration of

comparison to the DODAF Architecture DM2 of Figure 4, the world can be viewed in

terms of physical entities or objects and their interactions, as shown in Figure 36. This

world is modeled structurally as having to two entity types, resource and context. A

driver is one type of payload that has a person role. An MCPS by definition will have a

driver person role. The block “Physical” is introduced here as an abstraction for material

and energy so as not to bias the technological solution that uses the operating resource.

Material can also be a type of payload. From a system perspective, an organization is part

of the context. From a MCPS perspective, only organizations that it interacts with are of

interest. Friendly force is a type of organization that an MCPS interacts with during

operation.

 97

Figure 36. Types of World Entities

System is a type of resource as defined in the DoDAF DM2. It consists or is

composed of one or more performer entities. Performer entities have one or more agent

roles which also have a person role. The SysML notation indicates the “is a type of”

relation with closed clear arrow. The “is a part of” relation is indicated by an open arrow

with a diamond block on the other end. In SysML this also implies ownership, though not

necessarily physical containment. The arrow without the diamond represents a reference

compositional relationship but not ownership. Since much of the aggregation addressed

in this approach is logical, the reference relationship will be used since it is not clear what

logical ownership implies relative to physical ownership. The blocks represent entities

that are abstractions of something physical. Information, similarly to software, can be

thought to have a physical realization. A person role can also be considered to have

physical realization. It could be an instance of a person executing a certain set of behavior

or the making realization of that set of behavior.

a. World State and World State Model

From a MCPS system centric point of view of the world, the concept of a resource

generally is not a particular useful modeling concept. A system is a resource per the

DODAF DM2, but also uses resources. From a system centric standpoint, the world can

 98

viewed in terms of two top level entities, the system itself and the context as shown in

Figure 37. As mentioned before, the system has one or more performer entities which

have one or more agent roles. The context is composed of multiple entity types. Two

example types discussed so far are the system store and friendly force. The system store

is an overarching concept for context objects that can be contained within the system

boundary: person role, operating resource and payload. The friendly force represents

other systems or organizations that the system interacts with symbiotically; that is,

entities with which the system interacts to achieve some higher level objectives beyond

what the system can achieve singularly. The generalized concept of an organization is not

needed in this approach.

Figure 37. World State

Each of these objects or entities have attributes or state variables. The value of an

object’s attributes at a given point in time reflects the objects state. The set of all possible

values is the state space. Collectively all the world objects and their attributes comprise

the world state. The actual state of the world is the ground truth state variable values at a

given point in time. From the standpoint of systems engineering, the system is designed

 99

as needed to appropriately interact with the context. From an agent standpoint, this world

state needs to be tracked and understood. This representation of the world is defined as

the world state model and the current value of the object attributes or state variables is the

belief state.

b. Context Class

In addition to system store and friendly force, there are other context entities or

classes that are relevant to any MCPS and that further define the domain. These are

shown in Figure 38 arranged in a composition. A common domain context attributes

could be arranged in a class inheritance model. The inheritance class model would

identify a sort of “pick list” of top level classes for the composition of the context in a

given system application. These classes are defined as follows

(1) System Connected—context object that can be stored, housed and/or
used within or at the system boundary

(2) Friendly Force—a context object of another system or organizations that
the system interacts with in some symbiotic fashion (e.g., two systems
cooperating to achieve some higher level objectives beyond what the
system can achieve singularly).

(3) Terrain—by the definition, the mobility aspect of an MCPS implies that
the system traverses some sort of terrain (air, ground, water, etc.). This
terrain can be decomposed or structure into a set of classes with objects
and attributes.

(4) Meteorology and Weather—for many MCPS, particularly those that
traverse the surface of a terrain, the meteorology or weather are a
distinct aspect of the context that can impact the behavior the system,
particularly the intelligent aspects of the system that rely on sensor
understanding of the context.

(5) Civil—whether expressly designed for civil use or not, most MCPS will
likely have to consider or interact with civil entities. These objects
include pedestrians, non-friendly force vehicle systems, cultural features
and traffic management components.

 100

Figure 38. MCPS Context Classes

Whether arranged as an inheritance or composition model, the context has to be

decomposed to some leaf level where objects with attributes can be instanced. System

store is an example of the next level of decomposition, but is still not at the leaf level.

A particular decomposition can be better focused for a given MCPS sub-domain

(e.g., MIGVS). Also, the second level composition of the context can be extended for a

given sub-domain. For example, top level concepts for a MIGVS context include military

base and enemy or threat in addition to what is shown in Figure 38. As indicated

previously, terrain can include roads which can include lanes as shown in the example

classification of Figure 39. A road is a type of improved surface which a type of a terrain

“thing” and has at least one notion of a lane which can have lane markings. These lane

markings then have a set of attributes which can impact how the system behaves.

Conversely the terrain for a given MCPS can be viewed as being composed of a set of

improved and unimproved surfaces.

 101

Figure 39. A Terrain Decomposition

c. System and System Performer Classes

Systems are composed of system performer objects. As with the context, these

system performer objects can also be considered domain MCPS classes. These are the top

level performer classes that are in turn composed of sub-performer classes or objects

which in turn can be further decomposed. When considering MCPS as a domain, these

are classes that organize the domain and may have like properties and attributes. When

considering a specific MCPS, these form logical compositions or aggregations of those

lower level types. Common MCPS performer classes are defined as follows:

(1) Mobility—a set of performer objects that provide the prime force that
enable MCPS movement and the ability to control and support that
movement as required.

(2) Tactical Command Control and Communications (TC3)—as indicated
previously in the context discussion, it is rare for any MCPS to operate
without some connection and purposeful interaction with other systems.
These are the set of performer objects that enable and MCPS to
communicate and exchange information with those systems.

 102

(3) System Command Control and Autonomics (SC2A)—regardless how an
MCPS is physically assembled, it can be viewed logically as a set of
autonomic objects that transform and distribute power and that control
signals and information as required to support other performer objects.
This autonomic system also has objects that manages the transformation
and distribution. Since the mission agent requires control of this
autonomic system to best execute, it is included here as well.

(4) Structure—the system performer classes previously described can be
decomposed to some component level. To form a system, they must
physically assembled in some fashion. These are the endo and
exoskeleton objects of the MCPS. These objects can be considered to
structurally interact with each other and the components that they
support.

(5) Mission or Special—in addition to the common or standard MCPS
domain classes described above, a given sub-domain of MCPS can
expect to see some specialized or unique mission purpose that can also
be logically related as a set of performer objects.

The intelligent and relatively more active performer objects that are the focus of

this research have a common set of object types: external sensor/actuators, direct control

of sensors/actuators and agent logical objects as discussed previously. This is shown as

an MCPS domain view in Figure 40. Each of these performer classes have operating

resources subject to capacity constraints and performance attributes subject to design

constraints. The intelligent control pattern, including task, detection and intelligent

control agents, is shown for Mobility but can be similarly elaborated for each top level

performer class. Like the context, these domain classes form the “pick list” from which to

compose or aggregate objects into systems. Further elaboration can only reasonably be

done within a given sub-domain (e.g., MIGVS). The objective again is to get to the

specific leaf level classes and meaningful instances of physical objects within definitive

attributes.

 103

Figure 40. MCPS Domain Performer Classes

d. Assigned Mission

An assigned mission is an externally supplied objective or purpose and is modeled

as shown in Figure 41. As indicated previously, trajectories include world entities which

define a state space of interest and goals which define desired values relative that state

space. As before, there are three types of trajectories: mission effect, discipline and

exception handling and each desired trajectory has an end state goal that is to be achieved

or maintained. Military operations generally have a significant planning phase where

each participating system receive detailed steps or a priori objectives that can be

synchronized with other systems. The system needs to distinguish between planning to

achieve a goal versus executing an action that achieves the goal. An Army MIGVS

mission includes other phases (phC): preparation, execution, and refit. An Assigned

Mission have an ordered set of tasks (taskOrd), tasks have an ordered set of desired

trajectories (trajOrdN), and desired trajectories have an order set of goals (goalOrdN). A

mission state is defined as the last task and trajectory activated and the goal state of any

other desired trajectories still executing.

 104

Figure 41. Assigned Mission

Goals then are satisfied not only when they achieve or maintain the correct state

(satSMOP) relative to the correct time (satTMOP) per the goal specification of Table 2,

but also when they execute in the correct phase and correct order. The mission state will

reflect a current phase (phC) and a current desired trajectory order (ordC) that can be

compared to the phase (phase) and the order number (ordN) of the goal as planned. Goal

satisfaction (isSat) can be represented in Boolean expressions as follows:

isSat = {satSMOP} and {satTMOP} and {isActive}

satSMOP = {current state <= (state target +/- state tolerance)}

satTMOP = {current time <= (time target +/- time tolerance)}

isActive = {phC = goalPh} and {ordC = ordN}

Mathematical expressions in SysML are captured using constraint blocks. As

shown in Figure 42, constraint blocks are used to capture the expression above and are

part of a goal. Achieve and maintain goals have some variation in state and time

expression, so goal is further typed accordingly. Also, since complex state is difficult to

express mathematically, particularly in a SysML constraint equation, high level

representation of that state may be used along with value expressions as shown in Figure

42. For example, given a vehicle following goal target of 40 KPH with a tolerance of +/-

 105

2 KPH, can be equivalently expressed as a target value of one with a tolerance of +/-

0.05. For a knowledge state situation goal, the state measure can be expressed as a

difference between the set of all possible variables and the values of actual state

variables.

Figure 42. Goal Constrains

Specific goals through the mission and desired trajectory hierarchy are typed as

achieve or maintain goals, at which point they will inherit the appropriate constraint

block equations. Since the value equations are notional and time targets and tolerances

are straightforward, the focus of the modeling and goal constraint equations is on the

target and actual or current state. Each state expression is unique to given desired

trajectory and goal and can have many variables. Additionally, for maintain goals, the

current state needs to be assessed throughout execution and will be an in-progress state

measure, such as an average or accumulation. A state average measure is used as the

default for a maintain goal state equation in Figure 42. Since the state measure needs to

be re-defined or retyped for each unique goal regardless, it can be re-defined to the

appropriate in-progress measure at that time.

 106

e. Agent Logical Object Model

A general pattern for an agent logical object’s structure is shown in Figure 43.

The agent is composed of an overarching behavior and a world model. The agent’s

behavior acts on the data stored in its world model. The world model includes Agent

Knowledge and a World State Model (WSM). Knowledge includes declarative and

procedural knowledge, particularly knowledge about standards of behavior. The WSM

includes an Assigned WSM (ASWM) and a Derived WSM (DWSM). The DWSM is

composed of the subordinate agent AWSMs. The agent’s behavior then generates

commands to subordinate agents and percepts to superior agents as required given the

current or belief state of the world and its goals. Each agent follows the same general

pattern as indicated in Figure 43.

Figure 43. Agent Logical Object Structural Pattern

The top level agent structure for a given MCPS consists of the mission agent and

some number of task agents. An example system’s top level agent composition is shown

in Figure 44 using a SysML Block Definition Diagram (BDD). Each of these agent types

 107

represents a more specific person role and has the pattern shown in Figure 43. The

mission agent is one role that a vehicle commander performs within an MIGVS for

instance. Each task agent can decompose in a similar fashion to include an intelligent

control agent and some number of detection agents within a BDD. They in turn also

decompose into some number of sensors and controllers. A control hierarchy can thereby

be fully elaborated from a mission agent at the top down through some set of sensors and

controllers at the bottom.

Figure 44. Example Mission and Task Agent Structure

Agents then interact via commands and percepts in a hierarchical pattern as

shown in a SysML Internal Block Diagram (IBD) in Figure 45 for the mission and task

agents. The “internal” in this case does not represent any physical containment. The

commands and percepts are represented as signals that have directional flow between

SysML proxy ports. Both the signals and the ports can be thought as some logical

component (e.g., message and interface, respectively). The flow of information can go

from the mission agent through tasks agents, ICA and detection agents, to

controllers/sensors and back again. This flow of information represents indirect or

horizontal logical flow as defined previously. Each component in the hierarchy has the

internal behavior to track its world state of interest, store it in a world state model, and

take appropriate action given changes in the world state based on the information flow.

 108

Figure 45. Mission and Task Agent Hierarchy

2. Solution Independent Behavior and Logical Concept Design

The structural concepts just presented are used to logically compose a system and

its context in terms of objects. The system’s behavior can then be defined as the

interactions of those objects. These object interactions have both “horizontal” and

“vertical” aspects to consider. The internal behavior of a given ALO acting on the goals

of its assigned and derived mission drive the horizontal interactions.

a. MCPS Logical Composition

As shown in Figure 46, from a system standpoint, the world is composed of two

major entities: itself and everything else with which it interacts (i.e., its relevant context).

Both the system and context can be “logically decomposed.” As identified previously, a

general model of an MCPS can be defined in terms of the top level performer entities of

Figure 40. The top level performer entities can be further decomposed to some leaf level

object that has behavior. The decomposition is best done in the context of a given sub-

 109

domain. Note again that these leaf level objects are abstractions of physical things. Also

note, that the top level performer objects are then logical collections of these physical

abstractions that can have aggregate properties and behavior. The context entities can

also be decomposed to objects or leaf level classes as required so as to define the world

state space together with the system objects.

Figure 46. System and World Composition

An example mobility logical decomposition is shown in Figure 47. With the

exception of mobility agents and the mobility intelligent sensors, these entities represent

actuator-controller pairs. For example, brake includes the brake itself and the brake

controller. They are not distinguished for simplicity of presentation. The controllers also

include any feedback sensors. The intelligent sensors are sensors that detect human-like

intelligence and/or context understanding. They are part of the event-effect control loop

shown in Figure 35 and would be paired with a detection agent based on what is being

detected. For example, a stability sensor/stability detection or a lane sensor or lane

detection agent.

 110

The blocks should be solution independent as much as practicable in the initial

conceptualization, though it is not likely to be system or sub-domain independent. A

MCPS, or a least a ground vehicle system, can be thought to have an engine even it is

largely composed of a battery pack. It should also have a transmission whether it is a set

of mechanical gears and linkages or electric motors and linkages. The engine and

transmission controllers are more problematic. However, the control of power or power

draw to an electric power can be considered logically distinct from control of its direction

no matter how likely they are to be combined in a physical solution. Secondary power

generation supports specific types of loads. Examples solutions for ground vehicles

would be an alternator or DC-DC converter to support electrical/electronic loads.

Figure 47. Example Mobility Logical Decomposition

b. Conceptual Data Model

All the system entities can be elaborated similarly to Figure 47. As indicated

previously, the elaboration of mission, trajectories and goals results in the elaboration of

the world entities, both system and context. The full elaboration of both system and

context will define the entire world and world state of interest to the system. However,

 111

each ALO world state model may duplicate entities relative to other ALOs. Given the

potential data intensiveness of this approach and given the need to understand the full

context relative to the system to support system analysis, a conceptual data model is

warranted. A conceptual data model provides a means to directly reason about the data in

the system. Though often used relative to data base design and data flow diagrams, it can

also be a convenient view into the data that augments or aids an object or object-like

design. A singular view into the data provides a visual aid that can promote efficiency

and interoperability for ALO world state development and update. Dividing the entire

world of interest into a set of concepts makes the reasoning about it tractable. It is akin to

decomposing the external world into a set of features (Poole and Mackworth 2010) and is

certainly a far more practical approach than reasoning about the world directly in terms of

states.

c. Agent Logical Object Interactions and Behavior

The logical agent interaction of Figure 45 can be expanded with the mobility

agents introduced in Figure 47. This is shown integrated in Figure 47 to emphasize the

hierarchical agent interactions of Figure 33. Each agent receives commands from a

superior agent and sends percepts back. Conversely, each agents sends commands to

subordinate agents and receives percepts back. Each task agent could be similarly

expanded. Each would have only one intelligent control agent and many detection agents.

The intelligent control agents communicate with the controllers of the control-actuator

pairs identified in Figure 48. Each detection agent would communicate with one

intelligent detection sensor for control and data. The command and percept extend to

these connections as well.

 112

Figure 48. ALO Hierarchical Interactions

The ALOs are leaf level classes that have behavior when physically instantiated

as objects. This behavior is shown in Figure 49 for the mission agent. However, each

ALO follows the same behavior pattern. The command/percept parameter nodes of

Figure 48 on carried by the command/percept signals shown in Figure 47. A command is

received from some agent superior to the ALO in the agent hierarchy. This command is

stored in the assigned mission state model (ASM) which is part of the ALO world state

model shown in Figure 43. The command is analyzed to see what behavior is required to

achieve the assigned mission. The results of this are derived mission state models

(DSMs) and commands sent to subordinate ALOs in the agent hierarchy. The subordinate

agents send back percepts to the ALO which then updates the DSMs, the ASM and a

percept is sent to the superior agent. The cycle repeats itself as required and can extend

down to the controllers of the sensors and actuators. After the initial command, the ALO

will access what is currently stored in ASM and reconcile as required with derived state

and commands.

 113

Figure 49. Mission Agent Behavior

The assigned and derived state models include goals, goal states and current

values about the real-world state space of interest to the ALO. The goals may include

MOEs/MOPs appropriate to the assigned missions and trajectories. The derivation of

missions and trajectories would then include MOE/MOPs required to support the

assigned mission. Note that the ALO behavior is pretty basic at this stage of concept

design (i.e., bring information in and move information out). The behavior is of course

a much more challenging design problem if it is to be realized by computational

technology rather than a human, to include the definition of a priori declarative and

procedural knowledge required to behavior with a certain expertise. However, in either

case, the behavior is limited by the information it receives and ultimately what the system

can sense about the real world. For this stage of concept design, the behavior is focused

on what information is needed and therefore what has to be sensed.

d. Horizontal Behavior Logic

As defined previously, the system behavior logic is the sum of all system behavior

threads. These system behavior threads represent horizontal logic of indirect interactions

that can trace from event to effect. A notional example of this horizontal behavior logic is

shown in Figure 50 using the previous example of mobility. The mobility task (MobTA)

 114

agent receives commands (CmdMA) and sends percepts (PercMob) to the mission agent

and stores current state in the assigned mission state model per the ALO behavior pattern

of Figure 49. It then derives mission for the intelligent control agent (MobICA) and in

this case, one detection agent (MobDA). The MobTA sends the mission and any updates

by command to MobICA and MobDA and receives status back via percepts. The

MobICA derives and commands the control signals it needs to meet its assigned mission

and sends signals to engine, transmission, steering, and brake control. The MobDA

commands the road sensor as required. Both the MobDA and MobTA receive percepts

back. From this point on, the interactions take the form of direct energy or signal flow to

include interaction with the environment.

Figure 50. Mobility Horizontal Behavior Thread

Only the running gear and the road sensor directly interact with the context. The

MobICA and MobDA ALOs provide the respective logical interpretations of those

interactions to the MobTA. Only the ALOs can detect the occurrence of an event and

determine if a desired effect has been achieved. The MobTA decides on the appropriate

 115

course of action based on the context and system status as compared to the assigned goals

and then issues any required course correction commands to the MobICA. The context

and system status reflect the current values of the world state space and the goals reflect

the desired values. Any MOEs/MOPs are part of the goals and are decomposed through

the ALO assigned and derived mission and can be linked to control system, sensor and

actuator MOPs. The MOE/MOP dependencies can be defined by parametric diagrams in

SysML and constraint equations. A full mobility mission would require more knowledge

of the context, a wider state space, and therefore more mobility detection agents and

intelligent sensors.

e. Vertical Behavior Logic

As defined previously, the ALOs require the support of a computational stack,

either machine or human. This computational stack enables the indirect logical actions

between agents through signal, data, and information transformations. The main purpose

of the SC3 performer entity is to provide the autonomic control of the system, to include

the computational stack, required to support the mission ALO and the indirect logical

interactions of all ALOs. The computational stack of Figure 34 is shown in SysML in

Figure 51. The key elements of the stack are listed below.

(1) Information Support—this is more of a development reality than a
necessary component of the stack. Rather than have unique information
components for handling similar information (e.g., maps), common
information support components will likely be utilized and interface as
another application.

(2) Operating Environment—provides logical abstraction service (e.g., data
management), between applications and the operating system.

(3) Operating System—provides logical abstraction services to the computer
for scheduling tasks, managing memory, etc.

(4) Resource Access—provides direct access to computational hardware and
signal devices (e.g., device drivers).

(5) Computation—computational hardware

(6) Signal Control and Distribution—components that transform signals
from one form to another to support distribution and physical interface

 116

The purpose of the computational stack is not meant to provide a standard or

precise definition, but understand the flow of logic and its constraints and therefore the

impact on horizontal behavior thread performance. The flow of information does not go

directly from one ALO to another as it might appear Figure 51, but takes one too many

paths up and down the stack and goes through many transformations through different

forms of information, data and signals. The constraints of this transformation and

distribution are the performance attributes of the vertical stack components. These

attributes include latency, throughput, various computational measures, various

information or interoperability measures, and measures of the reliability or health of the

components themselves.

Figure 51. Computational Stack

Quantification of these MOPs cannot be defined until technology and architecture

selection as well as identification of human operators if any, but the linkage of

dependencies can be established as well as reasonable bounds on the MOPs. The

architecture can range from a single stack for ALOs or a single stack for each ALOs.

 117

These architecture extremes drive consideration of concurrency and have a different

impacts on the MOPs, such as signal delays versus operating system access delays. In

addition to the computation stack, other resource stacks for structure or power,

particularly electrical power, could be similarly defined if considered critical for concept

design. Structure is defined in this approach as its own unique performer entity, but

electrical power is considered part of the SC3 performer entity. SC3 thus includes the

components that make up the MCPS autonomic system the potential for direct analogies

and allocation to any needed human autonomic system.

The solution independent logic design is completed with the integration and

iterative elaboration of these models just described. The object-oriented nature of the

system classes should make a more iterative approach feasible (e.g., adding a new class

does not break previous class definitions or their relationships). Also, the full definition

and elaboration of all system objects, attributes, and their world relationships, is not

necessarily needed to adequately inform the trade space. Certainly critical MOEs/MOPs

along with their dependencies must be captured that drive trade space decisions of system

architecture, technology solutions and any human operator allocation. However, since

what is critical is not always known at the beginning of concept design, the object

oriented system approach can provide a “whole” model of the system logic with varying

fidelity based on its role and importance in the trade space analysis.

 118

THIS PAGE INTENTIONALLY LEFT BLANK

 119

IV. PALLETIZED LOADING SYSTEM CONVOY FOLLOWER

The concepts just described and modeled are applied to a MIGVS as a case study.

The MIGVS selected is the Palletized Loading System (PLS). To understand the

development of an agent and object based PLS concept model, a perspective of the

MIGVS as a domain is first presented. The MIGVS domain is presented in terms of a

domain system model, domain context model, an overall approach to concept design and

the PLS as a design reference system and convoy following as a design reference

mission. The domain system and context models are used directly in the generation of the

agent and object based concept model.

A. MIGVS DOMAIN

At a certain level of abstraction, all MIGVS have nearly common logic—shoot,

move, communicate and survive; this is so particularly for combat MIGVS. They are

distinct mainly in the performance and constraint attribution of the logic. This logic can

be embodied in a set common system performer class abstractions as well as common

functions. Many tactical vehicles however have specialized missions and capabilities,

such as launching a bridge, conducting route clearance, or in the case being studied here,

hauling supply. These can be added to the common logic as a set of specialized system

performer classes.

1. MIGVS Domain System Class Reference Model

System performer objects for the MIGVS domain can be hierarchically organized

consistent in part with the theory of nearly decomposable systems (Simon 1962), or

arranged in hierarchical levels so that the interactions within a level are a “different order

of magnitude” than the interactions between levels. As Simon explains, hierarchies are

composed of interrelated subsystems which are also hierarchical in structure and can be

further decomposed until some lowest “elementary” component is reached. Simon also

emphasizes hierarchies that are based on “who interacts with whom,” not on any

necessary “spatial” relation. The “elementary” component in a software OOAD logical

view can be defined as a snippet of code or a software “physical” part. This snippet of

 120

code can be configuration item assembled into programs, executables, etc., which form

the equivalent of a physical hierarchy for software. These are different hierarchies and

may or may not bear similarities in structure. The hierarchy of a MIGVS logical structure

follows the same principles, but its “elementary” components include more than software

code. They include any components that can be instantiated from all the system objects

and their sub-types.

In addition to the physical assembly and logical structures, other hierarchies could

be considered relative to the same components. How power is generated, distributed and

then consumed is a hierarchy, how structure is organized and support components could

be another hierarchy. Each of these can also be described as a different kind of

interaction. Any give hierarchy needs to be based on a type of interaction. For a logical

hierarchy, two types of interaction need be considered: 1) the logical dynamic

interactions that occur for a particular behavior or set of behaviors, and 2) and a non-

dynamic interaction or long term interrelationship that occurs to achieve an overarching

purpose. Thus, a logical structural hierarchy (LSH) is defined as a grouping of

objects/components according to the preponderance of its logical interactions to

achieving an overarching or common purpose. This hierarchy along with the other

hierarchies mentioned are different views into the same components for a given system

and represent a design vocabulary constraint.

A ground vehicle domain model (Adams and Washington 2012) was developed

that attempts to define a logical structural hierarchy for all possible domain components,

including cyber components such as software, control systems, etc. It was referred to as

the Standard Product Classification Hierarchy. This MIGVS domain model has been

adapted consistent with the objectives of this research. The first three levels of the

adapted model are shown in Figure 52. The MIGVS domain model organizes the logical

hierarchy into a pattern that can be utilized by any MIGVS project and forms a superset

of all possible elementary components. As such, it provides an object/component view of

all possible logic for a MIGVS. The intent is for the logical structure of any particular

MIGVS to be a selective instantiation from this domain model. It has the potential to

provide a standard logical view into a systems EBOM as the physical view standard of

 121

MIL-STD-881C. The leaf level components should be exactly the same except that it can

provide greater granularity of software, electronics and control systems components and

does can be used prior to a physical assembly and integration schema being selected. It

can be considered a decomposition bill of material (DBOM).

Figure 52. MIGVS Domain LSH

The MIGVS domain logical hierarchy in Figure 52 is organized into eight logical

groupings or classes at the second hierarchical level. Though appearing functional, these

are logical groupings of component abstractions or system objects. Each object at each

level in turn has a hierarchy until arriving at some desired “leaf level.” The leaf level can

be relatively high for early system abstractions, such as initial concept design, or can

extend to the part level equivalent to a full EBOM if desired. The organization again is

based upon the dominant form of interaction required between objects at a given level to

achieve the fundamental purpose associated with the object above them. There are a few

 122

exceptions to this which will be explained. The second level logic is defined with

discussion as follows:

a. Structure

The objects/components that provide primary and secondary structural support to

all system objects/components as well as protection against the direct effects of the

external environment. Component examples include turrets, hulls, cabs, electronic bays,

hatches, and software “structural” components (e.g., files, executables). Components

providing structural support have an interaction consisting of a balancing force or energy.

Software structural components do not have interactions with the physical structural

components, but contribute to the overarching purpose of providing structure. Structure

does not currently have agents, but this is a current technological assumption and agents

can be added when warranted. For example, embedding nanotechnology within the

structure could perhaps change its properties in response to dynamic conditions or

provide a behavior, such as health self-assessment.

b. Survivability

The objects/components that provide system-level protection against the direct

and indirect effects of projectiles and explosives. Examples include armor, active

protection systems, signature management systems, and fire extinguishers. Survivability

currently does not have overarching agents to perform integrated survivability, again a

technological assumption similar to structures. However, constituent survivability

objects/components, such as active protection systems and autonomous or automatic fire

extinguisher systems, can be modeled with an agent structure corresponding to roles.

c. System Command Control (C2) and Autonomics

SC2A is the set of objects/components that orchestrate mission and mission

behaviors through the command and control of system resources, provide the underlying

information/computation system resources, and that provide the behaviors required to

maintain internal local situation awareness as well as certain actions as a consequence of

that situation. A mission behavior is defined as any behavior that requires the support of

 123

more than one tasks agent. This can include the overall mission, complex maneuvers such

as hasty defense (Department of the Army [DA] 2012), and other relatively complex

behaviors such as full spectrum operations and mission tasks (DA 2012). The mission

agent as shown in Figure 45 is included here even though it has indirect logical

interactions across the hierarchy. However, by definition it contributes to the SC2A

overarching purpose. Also, it has a more or less continuing interaction with the SC2A

task agent, so it is likely to have more interactions with it than any other task agent.

The behaviors represented by the SC2A agents are historically the responsibility

of the vehicle commander. These behaviors include: leading the system mission, leading

the crew collective tasks, managing system resources through the mission, and

maintaining internal situational awareness. The mission, SC2A task, detection and

intelligent control agents play a role in supporting one or more of these behaviors. These

in turn can be seen as roles performed by the commander, or as previously stated, they

reflect an instance of the commander over some time frame. The commander switches

between these roles to perform specific tasks as required. The application hardware

acquires the necessary information and facilitates the action required for the agents to

perform their role.

As defined previously, the information and computation resources are the

“objects/components that generate, transform, store or distribute information required by

object/components” of the entire system. It reflects the computational stack shown in

Figure 34 along with the information support components. Additionally, a set of

computation software resources beyond the operating system and resource access are

included such as those typically associated with “middleware” or the aforementioned

quality attributes, such as cyber security. The computational hardware resources include

the types of computing or models of computation and mass memory as a specialized

types of computation hardware support. Computing types could include any of the

models of computation in Figure 24, but are currently focused on “general purpose

processors” and “signal processors” as the main processing components of concern since

direct control of sensors/actuators are distributed through the hierarchy. Other

 124

computational types could be added as technology advances, particularly agent or

autonomy based computing technology.

d. Mobility

The objects/components that generate, distribute and store the primary motive

force or energy of the system; that support or are associated with movement; and that

direct and control the movement relative to the external environment. Components

include engines, transmission, headlights, suspensions, brakes, alternators and driving

agents. Following the common agent pattern, the driving agents include a driving task

agent (DTA), multiple driving detection agents (DDAs) and a single driving intelligent

control agent (DICA). The DTA performs the role of the driver and the DDAs and DICA

account for the required driver skills. The DTA interacts via commands/percepts with the

mission agent and in turn interacts with commands/percepts with the DDAs and the

DICA. They in turn interact with the mobility direct control systems which are allocated

throughout the 3rd level under mobility and that interact with the physical-mechanical and

power/energy components.

e. Lethality

Lethality is the objects/components that acquire targets and can generate and

direct lethal and non-lethal effects against those targets. Component examples include

direct fire cannon, fire control, munitions handling, mortar and lethality agents. The

lethality agents follow the common agent pattern.

f. Tactical Command, Control and Communications (TC3)

TC3 is the objects/components that receive and process mission orders, report

tactical situations and events to appropriate unit command levels, and that manage or

support tactical information flow. Examples include FM radios, satellite radios,

embedded tactical network systems and protocols, and agents or application software.

Here again, following the agent pattern there is a TC3 task agent (TC3TA), multiple

detection agents (TC3DAs) and an intelligent control agent (TC3ICA). Most activity

surrounding planning for mission command (DA 72012) occurs via coordination between

 125

unit commanders apart from the MIGVS system level. The execution and the detailed

planning requires participation and interactions with many of the system resources, for

both these reasons, the mission agent is included as part of SC3 and as opposed to TC3.

The mission agent interacts via indirect logic as required to process the unit plan, conduct

detailed planning, and execute the mission. The TC3 agents handle the information flow

between the system and friendly units as required to support the mission agent. Unlike

other agents, the TC3 agents only interact with friendly elements in the external

environment and do not create effects in the external environment otherwise.

To the extent the system also includes roles that go beyond command and control

of the system and to the extent that the resources of TC3 are the primary means of

executing that command and control, the TC3 agents would include those additional

“mission” agents. This would apply to upper levels of unit command such as battalion

and company levels in maneuver units. The small unit level, such as platoons or sections,

would have to be examined to determine the proper placement suitable for concept design

analysis. For example, for a platoon leader managing hasty defense for his platoon

resource responsibilities, may still rely on direct line of sight acquisition or require lower

latency communication than that afforded from the tactical network.

g. Tactical Intelligence, Surveillance, Reconnaissance, & Target
Acquisition/Electronic Warfare (TISR/EW)

TISRTA/EW is the objects/components that enhance situational understanding,

evaluate threats, conduct surveillance and reconnaissance, and counter an external

system’s or threat’s ability to conduct C3 and ISR activities. Examples include long range

acquisition sensors, combat identification systems, and signal jammers. TISRTA/EW

agents follow the same agent pattern, except there is no actuation that changes the state of

the external environment. The agents correspond to roles and skills that are typically

ascribed to the MIGVS commander.

h. Mission and Special Equipment (MSE)

MSE is different than the other second level objects in the MIGVS domain logical

structural hierarchy that cover the common and/or combat logic for the domain. It is a

 126

convenient collection of many miscellaneous objects that cover the remaining and more

specialized logic possible in the MIGVS domain. The objects in the third level in general

do not interact with each other and can be mutually exclusive, even to the fourth level of

this hierarchy. An example is force projection, which is a mission area or type of mission

that will bring with it a different set of objects/components. Two mission types are bridge

launching and route clearance which typically would not be configured as a single

system, rather it is integral to the unique identity of a single system Sustainment can

include security, medical and transportation missions among others. Chemical,

Biological, Radiological and Nuclear (CBRN) can be specialized objects/components on

multiple systems and missions, and can be a set of objects/components that perform a

specific CBRN mission. When instantiated for a given system, MSE objects/components

at the third and/or fourth levels will be elevated to the second level of the system

hierarchical logical structure and each may have its own unique agent structure.

For a MIGVS, the agent pattern can be related to types of roles or human

positions, which in turn correspond to types of human or intelligent tactical tasks (DA

2012). In general, the mission agent corresponds to the management of crew collective

tactical tasks, the task agents correspond to individual crew member tactical tasks, and

detection and intelligent control agents correspond to skills required by individual crew

members to perform all their tactical tasks. As all the agents are defined or the pattern

detailed, the agents effectively correspond to all the roles performed by all the crew

members. The sensors can be related to a given crew member’s ability in the exercise of a

role or task, to acquire the information needed to assess a situation and take appropriate

action. The logic required by roles can now be modeled with a set of objects/components

that is neutral relative to a specific physical solution, human or technological. Historical

role types such as driving, gunning and commanding can be assessed in terms of

autonomy, a mix of autonomy and human solutions, or a full complement of human

solutions aided by information technology.

These agents are the superset of domain ALOs that were previously mentioned

and they correspond to human roles and sub-roles. These roles must be abstracted from

their “human implementation” while still preserving some understanding or model of the

 127

behavior. This requires operational analysis on a comparative system. However, the roles

performed are similar or common across many systems. Combining the agent pattern

with the MIGVS logical structure yields the agents and roles that can be utilized to model

behavior. An example select group of ALOs are shown in Table 4 with their

corresponding domain logical performer group and human roles or positions. A

significant level of granularity of human behavior is thus delineated.

Table 4. MIGVS Agents, Logic and Human Positions

Agent Logical Group Human Position
Mission SC2A Commander
SC3 Task SC2A Commander
TC3 Task TC3 Commander
TISR/EW Task TISR/EW Commander/Specialist
Driver Task Mobility Driver
Lethality Task Lethality Gunner
Bridge Launch Task MSE-Force Projection Specialist
Material Handling Task MSE-Sustain-Transportation Multiple
CBRN Task MSE-CBRN Multiple/Specialist
SC3 Intelligent Control SC2A Commander
TC3 Intelligent Control TC3 Commander
TISR/EW Intelligent Control TISR/EW Commander/Specialist
Driver Intelligent Control Mobility Driver
Lethality Intelligent Control Lethality Gunner
Bridge Launch Intelligent Control MSE-Force Projection Specialist
Material Handling Intelligent Control MSE-Sustain-Transportation Multiple
CBRN Intelligent Control MSE-CBRN Multiple/Specialist
SC3 Detection* SC2A Commander
TC3 Detection* TC2A Commander
TISR/EW Detection* TISR/EW Commander/Specialist
Driver Detection* Mobility Driver
Lethality Detection* Lethality Gunner
Bridge Launching Detection* MSE-Force Projection Specialist
Material Handling Detection* MSE-Sustain-Transportation Multiple
Chemical-Biological Detection MSE-CBRN Multiple/Specialist
Nuclear Event Detection MSE-CBRN Multiple/Specialist

The asterisks (*) for the detection agents in Table 4 indicate that the possibility of

multiples. Detection agents need to be defined relative to the skills that they embody,

what needs to be detected, and the uniqueness of the associated sensor(s). For example, a

many driving tasks require the need to stay within lanes appropriately. This implies the

 128

need to detect lane or edge markings and their types or implications. Mobility tasks also

require reacting appropriately to the dynamic environment, such as the behavior of other

vehicles on the road. This implies the need to detect other vehicles and interpret their

behavior. The sensor implications of these distinct detection tasks suggest the possibility

of different orientation and focus. Though these detection and sensor capabilities are

integrated into a single human solution, a human solution can be considered to be a

relatively expensive solution. It is also possible that distinct sensor solutions and

positions can yield better than human performance standard. The identification of specific

domain detection agents will have evolve over time with application of the domain

hierarchy, project and operational analysis, and autonomy and sensor technology

maturation.

There are also numerous mission types each of which could have a task agent, an

intelligent control agent, and multiple detection agents. In the case of I/RSTA/EW and

CBRN, these can be specialized capability of a system or the primary mission of the

system, such as a scout vehicle or CBRN reconnaissance vehicle, respectively. These

specialized vehicle system missions are quite numerous, so just a few examples are listed

in Table 3, a bridge launcher system and a transportation tactical system that includes

material handling for managing transported supplies on and off the vehicle. These

systems will have much of the logic that are in common for all combat and tactical

MIGVS systems, but will have the additional agents, underlying direct control objects,

and sensors and actuators required to perform the specialized tasks. Finally, there are

potentially more agents lower in the hierarchy, such as for Survivability/Hit

Avoidance/Active Protection and Lethality/Munition Handling, as well as the

aforementioned unit command agents whose role might be assigned to a given MIGVS.

The agents along with the other logical objects in the MIGVS structural hierarchy

form the “pick list” to instantiate any given MIGVS system. The agent objects enable the

system to be instantiated independent of whether the intelligent behavior is to be realized

by human operators or technology. Each of these ALOs can be thought to correspond to a

physical instance of the human position or can be assigned to a hardware and software

physical solution that represent a set of leaf level objects. They can reflect the “as is”

 129

behavior of a comparative system or to postulate new behavior with new tactics. All the

objects reflect a minimal level of behavior or basic purpose and properties that can be

used to assess candidate specific component or technological solutions.

2. System Context Reference Model

In much the same way the system performer logic can be assembled as a superset

of domain objects, the external context can be similarly objectified for the MIGVS

domain. The superset of MIGVS domain objects, referred to as a System Context

Reference Model (SCRM), are shown in Figure 53 for the first three levels of logic.

These objects can also have attributes that reflect the state of the external context when

defined at a moment in time, or that at least reflects the relevant state. As with the system

domain structural model, this hierarchy can be decomposed until a specific physical thing

or entity is defined. Conversely, depending the level of modeling abstraction, relatively

high levels of entity abstraction could be considered leaf level with lower entities

modeled as properties. As complex as defining the relevant world might seem, the U.S.

Army has done this in various forms, to include doctrine (DA 2008) and command

and control (JC3IEDM 2007), which were leveraged in the generation of the model in

Figure 37.

Figure 53. MIGVS Domain SCRM

 130

The SCRM like the domain system performer structural model can be used as a

“pick list” of external context entities for system interactions. Together they represent an

overarching world model for the system that can also be used to model both a goal state

and belief state. These context objects change state when they produce events and when

they absorb effects. The system objects produce effects to context events as needed. The

second level domain context objects are defined as follows:

a. System Connected

System Connected Context is defined as context entities have overlap with the

system boundary at some point in their life cycle. As indicated before, operating resource

is used or consumed during system operation and includes material, energy, and

information. The entity abstraction physical can be used for material and energy so as not

to bias technology selection. Information is externally generated information that is used

in some form by the system. Examples include mission orders, maps and control symbols

(DA 2004). Payload includes operators, passengers, and material that is not an operating

resource. The Tactical Network exists distinct from the system though the system has an

interface component or embedded node.

b. Friendly Forces

Friendly forces are the set of mobile physical objects or “systems” that the

MIGVS interacts in order to achieve its mission goals. These physical objects are further

defined according to the role they perform relative to the MIGVS of interest: subordinate,

command, lateral/team, support and dismounts. There is typically an interdependence of

goals between these systems that requires coordinated planning and synchronization.

Each of these objects can be service, joint, coalition or civil systems as indicated by their

attribution.

c. Threat

Threats are the set of physical objects that can cause a MIGVS harm through its

interaction during a military operation or as a consequence of being a military system.

They can range from something as physically concrete as a projectile, to something more

 131

nebulous such as a cyber security object, which can be mean the source of an on-going

attempt at penetration, or an active cyber threat once penetrated.

d. Civil

Civil is the set of objects related to non-combatant human and societal elements

that a MIGVS may interact with as an indirect result or consequence of a military

operation, particularly in an urban environment. These objects can be virtual such as

political areas, symbolic such as some traffic management components, and physical.

Urban environments have a greater variety and density of objects than non-urban

environments.

e. Terrain

Terrain is the set of objects that the MIGVS interacts with as a direct consequence

of its mobility and has indirect impact on other system logic. These objects can overlap,

but can be considered as distinct interactions such as vegetation on a landform, or have a

dominant interaction such as snow/ice on a road.

f. Meteorology and Weather

Meteorology/weather is the set of natural and man-made objects that the MIGVS

interacts with in the environment above the terrain, primarily related to atmosphere or air.

These objects interact with structure in terms of protecting internal components,

manipulators or actuators relative to effect creators, such as lethality, and any sensor as

regards visibility.

g. Facilities and Infrastructure

Facilities/Infrastructure is the set of objects that the MIGVS interacts with the

course of its life cycle that can be deemed “friendly” beyond friendly forces. They can

overlap with similar civil objects, but are tracked differently since there attributes are

more controllable relative to a MIGVS solution. These objects together can constitute an

army post or military installation or some facsimile thereof.

 132

3. MIGVS Concept Design

Concept design is defined here as a system design abstraction that identifies major

configuration items, system and configuration item allocated behavior, and the

underlying implementing technology. Concept design can represent a baseline

configuration from which detailed physical and behavior design proceeds. Concept

design can also be used as a preferred system alternative to support a competitive

acquisition in terms of program feasibility analysis, cost estimating, etc. The concept

design phase generally includes one or more system conceptualizations that are analyzed

via trade studies supported by a variety of analytical and simulation based techniques.

Models in 3D CAD form a critical part of this conceptualization and support physical

integration feasibility, mass property determination, and low level physical behaviors.

a. Initial Concept Design

The embodiment of cyber concepts: crew size, computational architecture,

sensors, software, etc., not only impacts the mass properties of the system, but impacts

the overall performance and operational effectiveness of the system. It has not only its

own trade space to consider, but has an interdependency of trade space with the physical

concepts and component solutions. The initial concept design of the cyber behavior must

enable the generation of alternative cyber concepts and integrate when needed with the

physical concepts. The analysis of physical and cyber are supported by different methods

and techniques but must be periodically and finally integrated into a whole system

concept. The initial system concept must enable, but not constrain the subsequent

embodiment of the system and be used as a point of departure of cyber capability if

required by the trade space analysis.

The role of initial concept design is to capture the operational behavior and any

required system behavior at a concept level of component abstraction. This concept level

of component abstraction forms the initial concept EBOM with attribute types for the

system that can be used to construct the initial physical EBOM of a CAD model and the

initial “cyber” EBOM. Each EBOM can be expanded and/or adjusted through the

generation of physical and cyber concept alternatives and specific attribute values as a

 133

result of analysis and trade space exploration. The cyber concepts have physical

constraints in the form of volume available, distribution of components, etc. The physical

concepts have cyber constraints in the sense of whether the final integrated physical

concept meet the needed operational behavior. Both the cyber and physical concept types

need their respective separate identities to facilitate different types of analytical methods

and they need to be integrated to facilitate a coherent system concept and interdependent

trade space. Note that the initial EBOM does not do much to inform the physical concepts

and the latter could be conducted more concurrently as the necessary recursion and

integration can occur.

b. System 4+1 Model

The final concept design can be illustrated in a System 4+1 model as shown in

Figure 54. This is similar to one of the many UML 4+1 versions as shown in Figure 3

with some notable exceptions. The initial concept design is the initial logical view. As the

concept design is formulated the initial logical view leaf level can be appended with

specific implementations or technology and cyber attributes assigned values. The Process

View represents the assembly and technological constrained logical view which will

impact its ability to meet key operational and system behavior. As cyber components are

physical realized, resource limitations and distribution will constrain the cyber

performance. The Physical View is the more standard EBOM view would be ideally

augmented with software assembly and components. The Deployment View represents

the physical deployment and distribution of the EBOM as typically found in the CAD

model. This Deployment View would ideally also include the software deployment to

computing resources.

 134

Figure 54. System 4+1 Model

Note that in the four views just described should have the same leaf level set of

components. The difference is in the rollup of the components and how that roll up is

used. For instance, the rollup of the Physical View is supports physical assembly and

installation where the rollup of those same components in the Logical or Process View

facilitates operational and system behavior analysis. The leaf level component represents

the elementary component appropriate to the design stage abstraction. In many natural

system hierarchies (Simon 1962), what is considered elementary is somewhat arbitrary,

much like the atom was once considered the elementary component of matter. It can vary

based on understanding, interest and other factors. This notion can extend to distinguish

between the elementary objects that need to be defined for concept design versus

engineering design. Concept design is the focus of this research and its elementary level

is the point where specific technological or physical solution is introduced into the

hierarchy. The elementary level for engineering design reflects part level detail final

design and a configuration managed EBOM. If desired, the logical structure design could

be elaborated to this level of detail, but this level of detail would not be required for

concept design. Concept design does require selection or object instantiation with a

component via a certain types of technology, to include some semantic information.

 135

The “+1” view is the Context View. As mentioned previously, the equivalent of

“use cases” is now embedded into the initial Logical View as goals. The context is

critical to not only defining goals, but also serves the more traditional engineering

purpose of bounding the system and identifying the system’s external interactions. An

objectified context produces events and absorbs effects as its attributes change. Most

operational goals reflect some desired effect or state of the context. The context’s state

attributes can also be linked to METT TC variables (ADRP 3–0, 2012) that correspond to

military planning and scenarios. Ideally, the context used in any analysis or simulation

should track to the context that drives the system behavior. This warrants a distinct view

of the context so as to facilitate translation if not have the same structure.

4. Palletized Loading System (PLS) and Convoy

The PLS A1 M1075A1 (Oshkosh Defense 2017) is a wheeled vehicle system with

a built in Load Handling System designed to enable “supply and equipment distribution.”

It is essentially a truck with a built-in crane that can also be configured with a variety of

mission equipment. It can load and unload flat racks that have standard Army pallets.

Distribution of supply is almost always conducted as a convoy mission. The M1075A1

will be used as a design reference system and convoy as a design reference mission for

this case study. The case study will amplify system and mission information based on

identified references and expert opinion and translate them for capture in a SysML

model.

a. Design Reference System

A design reference system is defined as an existing system whose crew and

system capability are abstracted into a solution neutral component based logical or initial

concept design. The PLS A1 vehicle system has similar components to any truck system

in terms of mobility, structure and survivability, can accept most of the Army’s standard

mission equipment in terms of TC3, I/RSTA/EW and lethality, and is typically operated

by a crew of two. The LHS system gives the PLS its unique syntactic or structural logic

identity. The structural logic and behavior vehicle, crew, and mission equipment are

reversed engineered and abstracted into a set of solution neutral components. The crew

 136

and crew behavior will be represented by an abstract set of ALOs and sensors that

operate and control the other systems as appropriate. This logic can be utilized to analyze

a particular cyber-related upgrade concept to the design reference system or used a

baseline reference to support any replacement concept evaluation.

b. Design Reference Mission

A particular convoy mission, like any Army mission, is defined using a mission

operations order that defines the purpose, expected threat, route plan, and other METT

TC variables. The convoy will also include a manifest that describes the supply cargo that

each PLS is to carry. The convoy can be configured into multiple March Units, will have

a Convoy Commander, and may be augmented with gun trucks depending on the threat

and other support vehicles. The focus here will be on the PLS that acts as follower

vehicle within the convoy versus a leader-type system. Most of the PLS vehicles will

function as follower systems in any convoy. The mission will begin with an operations

order received by each follower system in the motor pool. The follower system will be

required to obtain its cargo, follow appropriately within a convoy, and then deliver the

cargo to some designated destination.

Deliver or effect supply is the mission effect of the convoy overall and the

follower PLS specifically. The convoy mission is synchronized and coordinated both

internally and with appropriate external elements as part of the a priori mission plan and

through its execution. The synchronization and coordination is accomplished through

standard crew and military discipline behaviors such maintain tactical situation

awareness, maintain effective communications, follow the route plan, follow the lead

vehicle at distance and speed, etc. Additionally, certain “rainy day” behaviors are

expected to be handled when encountered, such a avoiding an obstacle. These behaviors

will be defined as explicit goals with desired outcomes in the state of the context and the

system. Sources for convoy behaviors (ATP 4–01.45 2014) and crew behaviors (TC 21–

305-10 1994) will be from public information or highly generalized to basic behavior.

The objective is to demonstrate the concept and not be an expert treatise on convoy

behaviors.

 137

B. AGENT- AND OBJECT-BASED PLS CONCEPT MODEL

A general approach can be defined for developing a system’s initial logical

concept design. This approach can be defined in terms of processes associated with

model elements or artifacts. Though an order in general can be defined, many of the

processes can begin independently and execute concurrently. Many of the associated

artifacts overlap or are interdependent in terms of their elaboration. Also, there is both a

“real physical” representation and virtual or data representation of certain classes or

objects within the same model. The overall approach requires synchronized model

elaboration among multiple artifacts or diagrams as they are initiated, linked, elaborated

and finalized. There are artifact integration dependencies horizontally between them and

hierarchically between the same artifacts for different agents. Since all model artifacts are

“objectified” including missions, trajectories and goals, new objects can be introduced

and added to the existing objects as required without undoing the previous work. The

general approach is address the key “sunny day” mission and military discipline

trajectories first and afterward address exception handling and any detailed behavior

elaboration as needed. The proof of concept for this research is based on the key sunny

day mission.

The actual fidelity of the agent and object based concept model to support an

acquisition program depends on the model’s purpose. Structural fidelity can be expressed

in terms of breadth and depth of the objects as well as the attributes that define the state

space of the objects and/or timing related performance. Behavior fidelity is expressed in

terms of the mission and desired trajectory decomposition along with the interactions of

the objects. This research has previously identify three purposes and each purpose

requires differing degrees of fidelity:

(1) Purpose #1: Inform and augment the initial need or operational
capability specification. Design reference missions are defined in
conjunction with the user. Design reference missions should include
critical behaviors or desired trajectories and associated state and time
attributes. State attribute details and non-ALO object attributes are not
needed for initial operational specification

 138

(2) Purpose #2: Support pre-award concept design feasibility. Identify key
attributes of the behavior and the system components required to support
a trade study. The selected technology should be identified and linked to
the technology neutral component objects. The component object
attributes should be defined where they match the trade study criteria
used to evaluate the technology.

(3) Purpose #3: Define a logical design to be part of overall system
technical baseline. All component objects defined and fully attributed in
the technology neutral model or the logical concept design model. The
logical concept design model should be extended with the selected leaf
level technology selection. The leaf level components or parts will be
defined in common with a CAD model engineering bill of materials
(EBOM). The logical design will form a decomposition BOM (DBOM)
view into the system’s components and parts.

Assigned Mission Model. The pattern for an assigned mission state model was

shown in Figure 41. The model defines the mission for a reference system (e.g., PLS), in

terms of key tasks and their desired trajectories. It orders the trajectories and any sub-

trajectories according to their execution across mission phases and links goals to the

desired state space. As the desired trajectories are decomposed, the goals ae typed as

achieve or maintain goals and goal specification state measures are defined. The goal

state measures reference properties in the selected state space. The state space consists of

system performer and context objects and their attributes and elaborated as needed to

define goal measures. The initial design reference system mission model is allocated to

the Mission Agent (MA) and then apportioned out to the supporting tasks agents. The

desired trajectories are successively elaborated and missions allocated to lower level

agents until the control and sensor desired trajectories are defined.

Define Logical Object Hierarchy. The logical object hierarchy consists of system

performer objects and context objects. System performer objects are selected based on

the design reference system and the domain logical hierarchy of Figure 52. If a suitable

logical object cannot be found, a new logical object can be created and added to the

domain logical hierarchy. The performer objects should be selected based on the mission

and desired trajectories identified previously. These object can be alternately expanded as

part of this overall hierarchy or expanded selectively as it is included in the state space of

one or more desired trajectories. A given performer objects attribution is likely to be

 139

expanded as it is needed to support a given trajectory. There should be one mission agent,

a task agent for each top level system performer object, one intelligent control agent per

task agent, and as many detection agents as required to realize the desired trajectories.

Finally, the controls and sensors should culminate the selection of performer objects.

These too will be defined in conjunction with mission and desired trajectory elaboration.

The “controls” and “sensors” are actually combinations of control system, power

amplifier, and actuator; and sensor controls and data conversion, respectively.

In similar fashion to system performer objects, the context objects should be

selected from domain context hierarchy of Figure 53 and from a review of the operational

source material. A key objective is understand how the operator(s) of the design reference

system views the external world, particularly as regards METT TC variables. The object

and attributes are also elaborated in conjunction with their use in the state space of the

mission and desired trajectory elaboration. The set of all performer objects fully

elaborated and attributed together and the set of all context objects fully elaborated and

attributed constitute the system concept data model. These objects pulled from a common

reference and elaborated as state space for the mission and the various desired

trajectories, will result in that common reference being a fully elaborated concept data

model.

Horizontal Interactions. The static behavior of the system is captured as a set of

signal flows between performer objects of the system. As explained previously, these

signal flows are of two types: horizontal or indirect and vertical or direct. The horizontal

signal flow between performer objects are the interactions that drive state change within

the objects and are captured using SysML IBDs. ALOs horizontally interact between

each other and with controls and sensors using commands and percepts. These commands

and percepts type the signals that flow between proxy ports that are types by ALO

interface blocks. The mission agent horizontally interacts with the unit commander and

the system task agents, the task agents with intelligent control and detection agents, etc.

Each performer object set has a set of IBDs that define the interactions. These performer

object IBDs are connected via an IBD with the mission agent. Together the entire set of

 140

IBDs constitute the system behavior threads that encompass events and effects as defined

by desired trajectories.

Agent Internal Composition Models. Each performer class has one task agent, one

intelligent control agent, and one or more detection agents. Additionally, the SC2A

performer class also has the mission agent. Each one of these ALOs are modeled as

SysML BDDs to include a behavior and a world model. As shown in Figure 43, the world

model includes knowledge and world state model which in turn is composed of assigned

world state model (AWSM) and derived world state model (DWSM). Knowledge

includes standard attribution used in the computation of goal state constraints. The

AWSM contains the ALO’s assigned mission and trajectories and the DWSM includes

the assigned mission and trajectories of its subordinate agents. Note that with the DWSM

allocation of trajectories that the decomposition of goals with allocation to agents is

effect. Also, identified are the commands and percepts coming from and into the agent.

These are the same commands and percepts that were types as signals in the IBDs.

Agent Behavior. At the top level, the agent’s behavior is simply to manage its

assignment, derive subordinate agent’s assignments, and manage their activities. It’s is

essentially managing data in the form of world state models and the reception and

issuance of commands and percepts as indicated in Figure 49. The agent must be able to

evaluate the belief state and goal constraints and know what action to take as a result.

From a concept design standpoint however, it is assumed if the agent has access to the

necessary data, behavior can be designed to take the appropriate actions. The key to

concept design is defining the necessary data in and out of each ALO and insuring there

are sensors and controls appropriate to that data. The agent’s AWSM as assigned to it

from the upper agent composition model is a parameter node that this agent’s behavior

must access and update. This agent’s DWSM defines its lower agent AWSMs in its

internal composition model which also types parameter nodes that the agent must access

and update. Finally, the commands and percepts from the various IBDs and agent

composition BDDs are also parameter nodes coming into and out the agent behavior.

Vertical Interactions. As indicated in Figure 34, the indirect logical interactions

must go through several direct transformations up, down and across a computational

 141

stack and signal distribution from source to destination. The SC2A performer class

defines these classes and objects for the system overall where they can then be directly

connected to the other performer classes. Each performer class will add computation and

signal classes to it performer-context pair and then elaborate direct vertical interactions as

required. These vertical interactions are still abstract and logical as are the SC2A classes.

The idea is to understand the logic that will need to be examined as specific computation

and signal architectures are defined and assembled. This will represent a constraint on the

horizontal thread performance that can be examined in a trade study. The SC2A contains

the entire system’s computation and signal objects and their interactions. It can also

receive commands from the mission agent and have goals. Goals can include providing

computation and signal performance, availability, status, etc. A similar approach can be

defined for power distribution to the system loads, but will not be explored in this

research.

Integration and Iteration. As was mentioned, though a general procedure can be

defined, there is much interdependency between the associated modeling artifacts. A key

set of logical structural dependencies is shown in Figure 55. The overall logical structure

is composed of the system and context. The system is composed of a set of performer

objects of which an agent is a type. An agent is composed of agent behavior and a world

state model. The world state model is composed of an assigned mission that has one or

more desired trajectories, each of which has one end state goal. The goal has state

measures that reference a state space which in turn references the system and context

objects of the logical structure. The agent behavior operates on parameter nodes: AWSM

which is part of the agent world state model that reflects its assigned mission, a command

that goes to a subordinate agent via a signal and that contains its allocated goal state

values, and a percept that goes to a superior agent via signal that contains current state

values to that same goal state space.

 142

Figure 55. Agent Model Structural Relationships

There are other relationships between model elements that are not shown. These

include: the DWSM behavior parameter nodes and composition part of the WSM that

reflect the subordinate agent assigned world models, world model knowledge that’s part

of agent composition, percepts coming from subordinate agents, commands coming from

superior agents, ports on IBDs that are typed by agent interface blocks, and the

commands and percepts that type signal flow on IBDs. All these relationships between

model elements need to stay linked as they are elaborated. It is easier, if not necessary, to

go back and forth between model elements as the decomposition of each progresses

 143

rather than try to decompose to the lowest level of one model element. Note that in the

iteration, much logical decomposition takes place.

What follows is the development of these respective model elements relative to

key PLS performer objects. All model elements: assigned mission, logical object

hierarchy, horizontal interactions, agent composition and agent behavior, are first defined

relative to the system and the mission agent. Then more elaborated versions of the same

model elements are defined for material handling. Finally, the other performer objects are

addressed. Each performer object elaboration is augment with an appendix where the full

description of the model elements can be seen.

1. PLS and Mission Agent

The mission agent (MA) by definition manages the mission for the system and

sits atop the logical behavior hierarchy. As such, the mission agent receives the PLS

assigned mission and is the top level logical interface between the system and unit and is

responsible for overall mission effectiveness and performance.

a. PLS Assigned Mission

The assigned mission to the PLS is convoy follower. The PLS assigned mission

orders and phases the tasks and desired trajectories required to perform the convoy

mission. The major tasks are supply effect, tactical situation awareness, command

synchronization, various forms of maneuver, and provide autonomics. Each of these tasks

include a set of desired trajectories or even recursive desired trajectory hierarchies. Tasks

and trajectories include a portion of the assigned mission state space. The assigned

mission includes a state space that bounds the system interest in terms of performer and

context logical objects. The desired trajectories and state space are further decomposed

and detailed within each performer object. All the relevant information from the mission

order is included in the assigned mission and may include some tasks that would typically

be part of institutional or unit training of human operators, such as military driving. The

latter enables greater adjustments to mission rules and conditions if needed; that is, the

system can take on more or less risk in the performance of a given desired trajectory

depending on overall mission criticality.

 144

The assigned mission has a variable that identifies the current phase: planning,

preparation, execution and refit. Each task then initiates in some planned order via an

order number that also identifies the phase or phases. In turn, each desired trajectory

within the task and each sub-trajectory with the desired trajectory also initiate within

some planned order. The tasks will typically initiate early in planning or preparation and

last until refit and run concurrently. Desired trajectories will be shorter, but may occur

several times over the mission plan and may execute in sequence or concurrently with

other task desired trajectories. For a supply effect task example, it has three top desired

trajectories, acquire supply which occurs during preparation and transport supply and

deliver supply occur during execution, though the latter constitutes the end of the

execution phase and the release from the convoy. The mission agent orchestrates this

activity and all planned behavior should execute in the proper phase and order barring

unplanned events. In this sense, the mission order as planned represents the sunny day

behavior of the system.

Examples of training tasks and non-sunny day behaviors are mission exceptions

(i.e., events that occur which cause a departure from the mission plan, at least

temporarily). Response to these events are not planned in the mission order by definition,

but are known to happen per doctrine. As shown in Figure 56, identified exceptions are

leader error, obstacle avoidance, defensive position, and rally. Many more exceptions are

possible. Though not part of the plan, the system must respond predictably to these

events. In this sense, they can be identified as a task that gets invoked similar to an

interrupt. The exceptions will not be elaborated with the rest of the model, they are only

illustrative of how they would be handled by the system using this approach. Each

specific exception would be identified and linked to an interrupt. Any aspect of the

standard mission that competes with the exception will be at least temporarily suspended.

Once the exception is addressed, the system will try to return to the original mission order

and provide a report back to unit command indicating its status relative to achieving the

mission order goals. Unit command can issue new instruction via a fragmentary order if

need be, and a new plan would be initiated.

 145

Figure 56. PLS Assigned Mission

b. Mission Agent Logical Object Hierarchy

The mission agent logical object hierarchy is shown in Figure 57. It bounds the

relevant state space and when fully elaborated, also serves as the system concept data

model. It consists of both performer logical objects and context logical objects. Since the

mission agent orchestrates the overall mission and associated goals, it also must be

cognizant of the entire mission state space, at least at some level of abstraction. Lower

level tasks and desired trajectories pull from this model as required and may elaborate

both entities and attributes. Per the modeling language and tool, they become part of an

elaborated concept data model during the elaboration process.

Note that although the mission agent is cognizant of the entire state space, it only

knows current state based on task agent percepts and goal state based on convoy task

force command; that is, it only indirectly logically interacts with the task agents and

convoy task force command and does not sense the environment directly. The mission

goals are divided and allocate among the task agents for each top level performer:

material handling task agent (MHTA), tactical C3 task agent (TC3TA), IRSTA task agent

 146

(IRSTATA) and the system C2 and autonomics task agent (SC2TA). The top level

context objects are system connected, friendly force, civil, terrain, meteorology and

weather, and both a source and destination military based. The mission agent tracks the

state of the context either from external tactical reports that are augmenting information

from orders it receives, or from performer object sensors that are passed up through the

agent hierarchy.

Figure 57. Mission Agent Logical Object Hierarchy

The system performer logic elaboration is shown in Figure 58. It represents a

selection from the domain logical hierarchy shown in Figure 52. It identifies the full

complement of performer types for each top level performer: sensors, controllers, and all

 147

the three agent types: task agent, intelligence control agent and detection agents. Each

performer logic is subsequently elaborated as part of that performer’s overall assigned

mission and state space elaboration (i.e., material handling only elaborates itself, not

other performer objects).

Figure 58. PLS Performer Logical Object Hierarchy

The PLS context elaboration is shown in Figure 59 as selected from the domain

context logical hierarchy of Figure53. Each performer logic elaboration mentioned above,

may elaborate or add any object in the context. The duplication is realized only in the

individual performer object hierarchy, the state space of Figure 57 will only have the

unique additions.

 148

Figure 59. PLS Context Logical Hierarchy

c. Mission Agent Horizontal Interactions

The mission agent horizontal interactions are shown in Figure 60. These are

shown as any other signal interaction in SysML on an Integrated Block Diagram (IBD).

All interactions further explored will of this same type except for where direct

interactions are specifically identified, and where controller and sensors interact with any

plant objects or context objects, respectively. As mentioned previously, the mission agent

horizontally interacts with each task agent and the convoy commander. The proxy port

naming convention is based on what it connects to rather than where it is located.

However, the ports are typed by interface blocks of the lower agent for the commands

and percepts. For example, the command and percept “signals” between the mission

agent and the MHTA are owned by the material handling interface blocks and referred to

as MHTACmd and MHTAPerc. The signals or connectors between agents are typed with

those commands and percepts and given the appropriate direction as shown in Figure 60.

 149

Figure 60. Mission Agent Horizontal Interactions

d. Mission Agent Internal Composition

The Mission Agent (MA) internal composition shown in Figure 61, like any ALO,

follows the general agent composition pattern of Figure 43. Its assigned world state

model (AWSM) is the assigned PLS mission of Figure 56. The MA derived world state

model (DWSM) is composed of the various task agent AWSM models and they contain

the mission tasks allocated to them. Each of those tasks are elaborated as needed. As

shown in Figure 61 for example, the supply effect tasks has three top level desired

trajectories: acquire, transport and deliver. The acquire supply trajectory in turn has 7

trajectories. These desired trajectories along with their respective goals and state space

are elaborated as part of Material Handling, though in operation, the upper level

trajectories are assigned as part of the mission order. The commands and percepts from

the horizontal interactions of Figure 60, are linked to the appropriate AWSM model.

These commands and percepts communicate goal state and current state of their

respective AWSM model.

 150

Figure 61. Mission Agent Internal Composition

e. Mission Agent Behavior

The mission agent behavior is shown in Figure 62 as a SysML activity diagram. It

follows the general agent behavior pattern of Figure 49. The mission agent AWSM along

with each task agent AWSM are types as parameter nodes. Also types as parameter nodes

are the commands and percepts that go between the mission agent and convoy

commander and the mission agent and the respective task agents. These are the same

command percept types as shown in Figure 61 and has used for IBD connector typing of

Figure 60. The agent behavior is very generally defined as manage assigned and manage

derived. Fundamental to both behaviors is the ability to determine current state and time

as expressed in the constraint equations, and then, assess whether the current state

constitutes sufficient progress toward achieving the assigned goals. Beyond that, the

agent internal behaviors generally move data in and out via commands and percepts and

then store, access, and update as needed.

The actual detailed behavior is non-trivial. The data in represents commanded

goal assignments from superior agents or status of current goals from subordinate agents.

The mission agent would have to know specifically how to derive the needed goals

 151

assignments and what would constitute sufficient progress toward achieving the goals. If

sufficient progress was not achieved, the MA would have to derive a plan to fix and

notify the convoy task commander. However, at this stage of conceptualization, it is more

important to understand the data; that is, if the data is sufficient, an algorithm can likely

be designed to achieve the detailed behavior. Important to the system conceptualization,

is what data needs to be understood and how is this data to be acquired. Little would be

gained by trying to capture behavior design in a detailed activity diagram at this stage.

Figure 62. Mission Agent Behavior

f. Mission Agent Integration

The five model elements with some key relationships are shown in Figure 63.

Together they provide the conceptualization of the mission agent. The full attribution of

the mission agent assigned desired trajectories and related logical object hierarchy will

not be completed until the lower level agents are elaborated. Since the lower level agent

models are elaborating the model elements of the higher level agent, it will be attributed

 152

as the lower level agent goals are defined. There is point in the lower level elaboration

that goes beyond the concern of the mission agent (i.e., defines detailed goals below its

assignment), but that detail is not viewable at that level of abstraction and can ignored by

the mission agent.

Beginning with the assigned mission and desired trajectories, an agent with

related performer context objects must be identified in the logical object hierarchy. The

performer and context objects constitute the state space used to assign mission goals. The

agent has an internal composition that includes behavior and world state models, an

AWSM and a DWSM. The assigned mission is allocated to the AWSM and allocations or

derivations of this AWSM is assigned to its DWSM, which is composed of the lower

level agent AWSM models. The agent interacts with lower level agents and communicate

goal state via commands and current state via percepts. The agent behavior manages this

communications and compares goal state to current state to determine the correct course

of action.

Figure 63. Agent Model Integration and Relationships

 153

In similar fashion, each of the five model types are created for the lower level

agents spread across the five performers. Unlike the mission agent, these agents detail the

trajectories and link to goals until the interaction with controls and sensors are defined.

As the goals are elaborated, it is more difficult to fit all the information on a single

diagram, but they are integrated in the model and can by starting at the higher level and

elaborating the upper trajectories. There also is an iteration of elaboration that needs to

take place between the assigned desired trajectories, the logical object hierarchy and the

agent composition. This iteration is not obvious in a sequential presentation. A detailed

thread for Material Handling and more brief and nuanced descriptions of the other

performer agents will follow. A more complete set of diagrams for each performer agents

is included in the Appendix organized by top level performer objects.

2. Material Handling

PLS material handling has the components required to load, unload and transport

supply as required by the mission. Delivering supply is the primary mission effect of the

PLS.

a. Material Handling Assigned Mission

The next level of decomposition of the Supply Effect task from the MA assigned

mission as shown in Figures 59 and 61, is shown in Figure 64. As was mentioned

previously, has three top level desired trajectories, one of which, Acquire Supply has

seven next level trajectories. Transport Supply and Deliver Supply have two and seven

desired trajectories, respectively. Supply Effect has a State Space which is selected from

the overall assigned mission state space and includes all the material handling performer

objects and selected context objects relevant to material handling. The desired trajectories

execute in sequential order: Acquire, Transport and Deliver.

 154

Figure 64. Supply Effect Task

The seven desired trajectories for Acquire Supply are shown in Figure 65. Each of

these in turn has at least on supporting desired trajectory. Acquire Supply’s mission phase

is preparation. The task order is sequential as follows: Identify Cargo, Verify Supply,

Cargo Move Ready, Unload Midpoint, Unload Flat Rack, Load Midpoint and Load Flat

Rack. Cargo Move Ready has two levels of supporting desired trajectories. In general the

system has to locate the cargo and make sure that it is the proper relative position to

inspect the cargo content or load the cargo, verify that the cargo content matches the

manifest, verify that the ground can support proper loading and that the cargo itself is

ready to be loaded, and finally to load the cargo.

 155

Figure 65. Acquire Supply Desired Trajectory

The cargo move ready goal is shown in Figure 66. It is typed as an achieve goal.

It inherits all the goal properties from Figure 42 as shown in the Cargo Move Ready Goal

block. Time goal measures are straightforward value assignments. The concern for this

goal and all the goals in this modeling approach are the state-related measures. The state

constraint equation is “redefined,” a SysML procedure, and a new constraint equation

defined that reflects the actual state for Cargo Move Ready. Once the actual state is

established, the standard goal satisfactions constraints inherited can use the actual state

(i.e., is the goal state satisfied; has the goal executed in the right phase and right order).

Since there are three supporting desired trajectories, the cargo ready to move actual state,

in this case, is expressed as a Boolean combination of those actual states. The state could

be expressed as either a physical state or in terms of a value that can be compared to a

goal target value of one.

 156

Figure 66. Cargo Move Ready Goal

The three supporting desired trajectories of Cargo Move Ready can be executed in

any sequence. The Verify Ground goal is shown in Figure 67. The incline and firmness of

the ground beyond certain limits will exceed the nominal design capacity of the loading

mechanism. The cargo’s actual incline and firmness relative to the ground or improved

surface area will have to be checked against those limits. Verify ground has two

supporting desired trajectories to detect actual incline and firmness. These trajectories in

turn have goals with actual state constraint equation and supporting sensor trajectories.

Their actual state constraint equations are expressed as a function of the sensor data. The

point of detection trajectories is to detect incline and firmness events (i.e., achieve a state

of knowledge). The ground is verified as being able to support loading when the actual

 157

incline and firmness are within specified limits. This is expressed in terms of a difference

function converted to a value expression. The other sub-trajectories, Proximity

Awareness and Cargo Ready, are similarly elaborated and together are used to determine

if the cargo is ready to be loaded.

Figure 67. Verify Ground Goal

The overall state space for Verify Ground is shown in the center of Figure 67. It is

drawn from overall Supply Effect state space and attributed as constraints are defined.

The ground sensor has to provide the needed signal data to that senses the Improved

Surface Area incline and firmness. The Improved Surface Area is a terrain context object.

The Material Handling Task Agent (MHTA) must has the knowledge of the specified

limits of incline and firmness used in the constraint state equation. The knowledge is part

of the world model of the MHTA which is a performer objects. The MHTA Knowledge

block has other knowledge required for state constraint equations form other desired

trajectories.

 158

Before it is determined that the cargo is ready to be loaded, the actual cargo must

be determined and compared against the manifest. The human operator, or in this case an

agent, is verifying that the supply that is supposed to be there, is actually there. This

requires physical inspection of each supply item loaded on the pallet. The Verify Supply

desired trajectory is shown in Figure 68. The actual state of the supply content is detected

based on sensor data and compared against all possible types of supply with identified

quantities. This actual state is then compared against the manifest using a distance

function to determine the supply there, not there, and any unidentifiable items. This

actual state is then compared to the goal target which is a one-to-one match of the actual

cargo content to the manifest. Not addressed are the many nuances of goal tolerance. For

example, missing a number of large caliber ammunition is probably much worse than

missing an equivalent number of cigarette cartons.

Figure 68. Verify Supply Desired Trajectory

The Verify Supply state space is shown in the center of Figure 68. It consists of

the identified signal data from the sensor and the following references to supply content:

 159

the actual content of the cargo, the manifest which is type of information object which in

turn is a type of context operating resource, and the knowledge of all possible types of

supply in both the Cargo Detection and Material Handling Task agents. The cargo sensor

includes signal data from other Supply Effect trajectories that have a concern relative to

the cargo such as whether is secured and the weight properly distribution from the Cargo

Move Ready desired trajectory. This sensor data is shown in Figure 69 relative to the

sensor reference trajectories and their associated detection desired trajectories. The

reference trajectories refer to the commands sent to the sensor controller and may be

simply be a control set point. The overall sensor state includes these trajectories along

with the sensor signal data.

Figure 69. Cargo Sensor Reference Trajectories

Once the correct cargo is identified, the supply verified, and the cargo determined

to be ready, it can be loaded. The most restrictive loading condition occurs with a

minimum length to load. In this case, the flat rack is unloaded to a midpoint of the cargo

bed, then the truck moved out while holding the flat rack position, and then the flat rack

 160

is lowered to the ground. Some external supply agent then loads the pallet with the cargo

onto the flat rack, and then the loading process proceeds in the reverse order. This is

shown as the top level desired trajectories in Figure 70. Here again, there is an optimum

flat rack position relative to the midpoints, vehicle location and the ground location. In

each case the actual load state is calculated as a difference function between the optimum

position and the actual flat rack position. Note that the movement of the vehicle occurs

between the MA and Mobility Task Agent once the MHTA notifies the MA of the

midpoint position.

Figure 70. Load Supply Desired Trajectories

The loading state space is relatively simple, consisting of the optimum position

knowledge and the flat rack position. As indicated in Figure 71, the flat rack position is a

function of the feedback received from the four material handling controllers: Boom

Control, Lift Control, Telescopic Control and Stabilization. This feedback is sent in

response to the control reference trajectory or set point sent to each controller. The set

point is unique to each load position and therefore as unique name. Once the flat rack is

loaded with the cargo and the supply meets the target goal relative to the manifest,

 161

acquire supply is complete. The next trajectories of Transport Supply and Deliver Supply

proceed in sequence. These trajectories and other Acquire Supply trajectories of Figure

65 can be found in the Appendix.

Figure 71. Intelligent Load Control Trajectories

b. Material Handling Logical Object Hierarchy

Portions of the material handling (MH) logical object hierarchy have been

referenced in each of the desired trajectories previously discussed. The MH logical object

hierarchy includes all those references minus duplication and with the performer agents

specifically identified. It consists of a set of the performer objects and a set of context

objects as shown in Figure 72.

 162

Figure 72. Material Handling Logical Object Hierarchy

The material handling performer objects are shown in Figure 73. There are six

ALOs: one task agent, one intelligent control agent and four detection agents. Each

detection agent corresponds to a sensor organized around the objects in the context that

the sensor is to detect. The “sensor” is a conceptual abstraction to define the key state

attributes and may be realized by a single sensor, multiple sensors, or be combined

relative with other sensor abstractions. The sensor state is a combination of any control

that determines its focus and/or area of coverage and the data itself. At this level of

abstraction, the sensor converts some phenomenology to a data or cyber signal. Any

interpretation of the context is done by the detection agent as function of the sensor signal

data as identified in the constraint equation. Sensor signal data is identified by the

information it will provide for use in the function, such as area of coverage, presence,

range, identification, track, etc. The intelligent control agent controls for control objects:

boom, telescope, lift and stabilization. These in turn control the plant (i.e., crane). The

control objects are an abstractions of a controller, power amplifier and any feedback

elements.

 163

Figure 73. Material Handling Performer Logical Object Hierarchy

A key object in the context is defined as the Cargo Supply. It is the combination

of transport elements, physical supply and the manifest as shown in Figure 74. The

transport element consists of a pallet or ISO container and a means to secure the pallet

(e.g., straps and hooks). The physical supply is the actual supply being shipped and can

be any combination of ten classes of supply. Each of classes has sub-classes as shown for

subsistence items. The manifest is a list of items that are supposed to be shipped. As was

indicated before, the system must verify that the actual cargo content matches the

manifest. For human operation, the crew or commander is accepting responsibility for

that supply during transport. There is a third version of supply as part of the MH task and

detection agent knowledge. This is used to for detecting the actual cargo on the pallet and

includes a list of all possible types of supply. It is represented as a single property or list

when referred to in the trajectory actual state constraint equations. However, each

reference is actually a complex data structure and refers to the many data items listed in

Figure 74 with specific identity and quantity. The constraint equations are framed as a

weighted value composite of a many variable distance equation. For supply convoy, this

 164

value composite is the key state effect from which to judge mission completeness.

Mission completeness of 97% for example would be the percentage of items delivered

relative to the manifest, with a presumed weighting of critical items over non-critical

items.

Figure 74. Cargo Supply Logical Object Hierarchy

c. Material Handling Interactions

The interactions of the agent objects, the detection agents and the sensor objects,

and the intelligent control agent and control objects are shown in Figures 75, 76, and 77,

respectively. The interactions again are indirect logical commands and percepts and

follow the same pattern and naming convention as discussed previously for the mission

and task agents. The detection agents share a name identifier and communicate one for

one with a sensor: Cargo, Ground, Overhead, and Pedestrian. The intelligent control

agent communicates with all control agents. This is required to insure a coordinated state

and no contradictory direction. Though commands and percepts are sent to control and

sensor objects, they are not managed as goal and current state within those objects. The

commands are typically set points or reference trajectories as discussed previously. The

response is feedback and or signal data as appropriate. Not that the mission agent

 165

connected to the MHTA connected to ICA and DAs, and so on, are all connected. The

entire system could be represented real estate permitting. Though the mission plan and

associated desired trajectories have a certain sequence, the interactions can be concurrent

and can be either asynchronous or synchronous. In this sense, the agent object executes

more like an actor model than a finite state machine.

Figure 75. Material Handling Top Level Agent Interactions

Figure 76. Detection Agent and Sensor Interactions

 166

Figure 77. Intelligent Control Agent and Controller Interactions

d. Material Handling Internal Agent Composition

The internal agent composition of the material handling task agent (MHTA) is

shown in Figure 78. It follows the agent internal composition pattern previously

discussed and as presented for the mission agent. The MHTA assigned world state model

(AWSM) has the supply effect trajectories as assigned from the mission agent. It has a

derived world state model (DWSM) that is composed of the AWSMs of the subordinate

agents: the intelligent control agent (MHICA) and four detection agents: Cargo (CarDA),

Overhead (OvDA), Ground (GrDA) and Pedestrian (PeDA). The detail trajectories that

are part Acquire, Transport and Deliver desired trajectories, are allocated to these various

subordinate agents. The commands and percepts between the MHTA and mission agent

and the MHTA and the subordinate agent as reflected in the IBD signals reference the

respective AWSM. Trajectory goal states are communicated in commands and current or

belief state is communicated in percepts. Also shown as part of the agent world model

(WM) is the Knowledge that was required for the actual state constraint equations as

elaborated in the assigned mission and desired trajectory decomposition.

 167

Figure 78. Material Handling Task Agent Composition

The CarDA is the most complex of the detection agents. It has seven assigned

trajectories in its AWSM as shown in both Figure 78 and 79. It also has a DWSM that

has a single AWSM for the sensor (CarSen) with the sensor trajectories and sensor data

signals previously discussed. As is the pattern, the CarDA receives commands and sends

percepts with the material handling task agent relative AWSM goal state and current

state, respectively. Similarly, it sends commands to and receives percepts from the

CarSen sensor. The sensor however does not manage these as goal state and current state,

it manages it as an input (e.g., set point for control), and responds with signal data that

the detection agent can interpret. The stored knowledge required includes optimum load

location relative to the vehicle, the ability to recognize properly secured cargo, and an

understanding of proper weight distribution. This knowledge again is used in the desired

trajectory actual state constraint equations. The other three detection agents are similarly

defined and included in the Appendix.

 168

Figure 79. Cargo Detection Agent Composition

The material handling intelligent control agent (MHICA) is shown in Figure 80.

Like any ICA, one ALO controls multiple control objects to insure an intelligent

coordinated response. For each of its assigned trajectories: Load Midpoint, Unload Flat

Rack, Load Midpoint, and Unload Flat Rack, the MHICA sends a control signal to Boom,

Telescope, Lift and Stabilization control objects. Here again, these control objects see the

commands as set points or reference trajectories and the percepts are just position

feedback. The knowledge required by the MHICA is to know what the optimum positions

are during loading and unloading. The MHICA assignment would reflect this knowledge

as a target but may vary the tolerance based mission considerations.

 169

Figure 80. Intelligent Control Agent Composition

e. Material Handling Agent Behavior

Part of each ALO internal composition is behavior. As previously discussed, each

ALO has the same behavior at this stage of conceptualization. It must manage the

interaction with its superior agent and its subordinate agents, store its assignment, derive

subordinate agent assignments, and take appropriate action based on current state. The

distinction between each ALO is in the data or knowledge from which it bases its

behavior. For the MHTA as shown in Figure 81, the commands and percepts with the

mission agent type SysML parameter nodes and flow into an out of pins to manage

assignment. It is similar for the commands and percepts for subordinate agents and

manage derived assignment. These commands and percepts are the same signals that

show up on the respective IBD and agent internal composition models. The respective

AWSM as assigned from the mission agent, and the derived AWSMs of the subordinate

agents, from the agent internal composition type SysML parameter nodes that are

accessed and updated by the internal behavior. Again, the details of this behavior is not

trivial, but more of a standard autonomous design task if so allocated. This behavior finds

an optimum path through the state space given a goal state and a current state. The

CarDA and MHICA are similarly defined in Figures 82 and 83.

 170

Figure 81. Material Handling Task Agent Behavior

Figure 82. Cargo Detection Agent Behavior

 171

Figure 83. Material Handling Intelligent Control Agent Behavior

Each material handling diagram type has relationships to one or more of the other

diagram type as shown for the mission agent in Figure 63. Though presented

sequentially, much iteration needs to take place as the diagrams evolve. The mission

agent integrates all the behavior of the performer objects through interaction with their

respective task agents, but the goals are best elaborated within each performer object as

allocated trajectories from the mission agent. All performer objects follow the same

pattern as material handling and will be briefly be briefly summarized subsequently with

the full complement of diagrams in the Appendix.

3. Tactical Command Control and Communications

The purpose of tactical command control and communications (TC3) is

communications and information exchange with unit and other “friendly” elements.

Actual mission command is performed by the mission agent. The TC3 performer object

manages the conversion of information between the mission agent’s world state model

and the unit’s standard messages. Some physical assumptions were made relative to the

external information exchange. Namely, that voice interchange will be prominent, that it

can be augmented with data, and that current interoperability data messages like the use

 172

of radio procedure Prowords and tactical reports (e.g., spot, position), would follow the

same formats as today. Separate voice and data channels were assumed and required

response would have the same form as the input (e.g., if a voice command came in, there

would be an acknowledgment in voice). This meant that the message state space would

include whether it was voice or data in addition to its information content.

The radio or tactical communications logic had to be understood in terms of what

is endemic to the identity of a radio and what is needed relative to human or intelligent

behavior. The latter then had to be adapted to the general ALO, sensor and control pattern

already described. This is best understood in the context of TC3 intelligent control agent

(TC3ICA) and detection agents IBD as shown in Figure 84. For ease of modeling, a

single transceiver was assumed, though logical this could be separated into separate

channels and separate transmitter and receiver. Voice and data adapters provide data

to a tactical network adapter. Adapters, like the transceivers, operate in both directions.

TC3 “control objects” and TC3 “sensor objects” interface with the network adapter as

opposed to the context like other performer objects. These objects sense and control

content between the detection agents and intelligent control agent. For example, the

tactical report sensor will recognize the message type as tactical coming from the

network adapter, and provide it to the tactical report detection agent that can determine its

content.

 173

Figure 84. TC3 Intelligent Control and Detection Agent IBD

The data sensors and controllers, though somewhat artificial, can correlate to real

logic that needs to exist to bridge between intelligence and data presentation. This logic

would likely be combined as part of the network interface design and the terms would not

likely be used. It does enable the general patterns as defined here to be used and the same

set of diagrams can be generated. The TC3 task agent receives and generates the data in

the same way as the other tasks agents. The TC3 performer object logical concept design

is included in the Appendix.

4. Intelligence Reconnaissance Surveillance and Target Acquisition

The purpose of the intelligence reconnaissance surveillance and target acquisition

(IRSTA) performer object is to detect threats in the context and to determine the

geolocation of the system. The PLS as defined here does not have lethality, so it does not

attempt to engage threats. It reports the presence of the threat and their geolocation

trough TC3 so lethal units or systems (e.g., convoy supporting gun trucks), can take

action. The desired trajectory of threat awareness is a maintain goal as shown in Figure

85. The state measure is defined as current versus actual to distinguish from an achieve

 174

goal. The current state of threat awareness is the actual state of each threat that it can

detect. In this case Armed Individual, Armed Vehicles, Improvised Explosive Devices

(IEDs) or more precisely, their means of camouflage, concealment and deception (CCD),

and “shots.” Shots refer to the ability to detect a projectile that was fired and find its

origin of fire. Its sensor would typically be physical realized as an acoustic sensor.

Figure 85. IRSTA Threat Awareness Goal

Each of these threat types has an associated detection agent and sensor per the

agent pattern as indicated in the agent and sensor IBD shown in Figure 86. Also shown in

the geolocation DA and sensor. Each detection agent uses the geolocation and range data

from its sensor to calculate the threats geolocation. This location does not have to be

precise as it is replacing a human operator’s ability to estimate location. It also does not

presume a physical solution such as the global position system. Note also that IRSTA is

strictly a passive activity, it itself is not directly causing an effect or context state change.

There is on intelligent control agent or controllers except what is needed for sensor

control. Each of the detection agents are modeled to detect features about each of the

threat types as shown in the desired trajectories within the Appendix. They again are not

 175

fully classifying the threats, just characterizing them enough to support reporting and

subsequent action.

Figure 86. IRSTA Agent and Sensor Interactions

5. Mobility

The mobility diagrams have a different look and feel and some minor differences

in information capture as explained in the Appendix. The mobility performer object is

shown in Figure 87. The mobility task agent (MTA) has the conduct maneuver task as

identified in the PLS mission. Its primary purpose is maintain following distance or time

from its lead vehicle and is identified as a maintain goal. It is supported by several lower

level desired trajectories: “Move To,” Detect Obstacle, Detect Lead Vehicle, Detect Road

Network, and Pass Route Point, as shown in Figure 88. In other words it has to locate the

vehicle in front, move to a commanded position, avoid obstacles, follow the road and

indicate when it has passed a route point (e.g., checkpoint). The full complement of

mobility diagrams can be found in the Appendix.

 176

Figure 87. Mobility Performer Object

Figure 88. Conduct Convoy Maneuver Desired Trajectory

 177

6. System Command Control and Autonomics

The top level desired trajectories of system command control and autonomics

(SC2A) are: Mission Load Set, Mission Log, Play Mission Log and Provide System

Computation and Signal Distribution. It must be able to detect that a mission is

forthcoming. In the absence of a human operator, this requires that the system have some

sort of permanent on state, at least on that can detect the initial command. From there it

must be able to provide power to the system’s computation and signal distribution for the

required ALOs to operate. Ideally this would occur without the prime power of the

system being engaged, particularly a combustion engine. A variety of mission data needs

to be loaded (e.g., mission plan, map data, route plans, radio pre-sets). Each type of data

must be routed to the appropriate ALO or ALO set. Once accomplished, the ALOs can

behave and interact as previously described. During mission execution, the SC2A

performer object captures and stores a mission data log. After the mission, the SC2A can

play back or provide the data log for download. This is the equivalent of the PLS crew

participating in an after action review.

The mission data log is captured by SC2A and its “sensor and “control”

components. As with TC3, these are data sensors and data controllers rather than objects

that interact with the context and would likely be part of some embedded computation or

network logic. The SC2A sensor and controller objects detect events in the computation

and signal logic of other performer objects and then captures and stores the event state. In

this approach, all computation and signal objects are system resources. These resources

can be viewed as being deployed in support of ALOs. A deployment like this would have

to take place at design given the current state of practice. However, as practice evolves,

this deployment could take place at run time (e.g., cloud computing), or even

dynamically to adapt to varying resource conditions. Each ALO in each performer object

has computation and signal objects deployed to it to support its execution. For example,

the event sensor as shown in Figure 89 connects to the computation and signal logic

of each performer ALO. It senses when an event occurs and passes the data to the

Event Detection Agent, which then identifies the event and the relevant state for the

SC2A task agent.

 178

Figure 89. SC2A Performer Objects

As discussed previously, the focus of this research was on the horizontal

interactions as isolated from vertical interactions or data transformation. However, to

fully understand the SC2A performer objects, an illustration of the vertical logic for

material handling (MH). As shown in Figure 90, each MH ALO has a computer object

which represents a physical computing instance as, as opposed to a computer, that

supports the ALO with the all the data transformations of a vertical stack. Once

transformed, the data is communicated as signals between computer objects. The signal

objects can be modeled as network or bus connections, as shown in Figure 91 for the

detection agent computing, or as singular signal objects between each computer. As the

computer and signal objects are aggregated into an actual computational and signal

architecture, the execution time and throughput of the data transformation and

distribution will constrain the performance of the horizontal interactions.

 179

Figure 90. MH ALO and Computational Stack Vertical Interaction

Figure 91. MH Computation and Signal Interaction

 180

In summary, what was initially conceptualized as the mission agent state space of

Figure 57, can now be considered to be a system architecture concept data model as

shown in Figure 92. The system and its context have been elaborated in conjunction with

the performer object elaboration and can be viewed as a set of structural entities and

attributes. Performer objects can be extracted from the top level model along with any

relevant context. As shown in Figure 93, the system has a material handling performer

object which has a MHICA which has an assigned world state model that has several

desired trajectories. One of those trajectories, Load Midpoint, has a goal with state and

time attributes. Note that this is only part of the MHICA attribute set of state space.

Similarly, as shown in Figure 94, the Cargo DA can be extracted from the top level set of

performer objects and its state space identified. The context must also be elaborated to

fully understand its state space. A mobile, goal directed, and context aware system

requires both system and context definition to fully understand the systems data and

signal attributes.

Figure 92. PLS System Architecture Concept Data Model

 181

Figure 93. MHICA Concept Data Example

Figure 94. Cargo DA Concept Data Example

 182

C. PLS MODEL QUALITATIVE ANALYSIS

The case study model was generated using the MCPS Concept DM2 and the

supporting foundational concepts. In general, the five research questions posed have an

affirmative response. Detailed responses are as follows:

Technological independence. The system’s logical structure was modeled without

specifying a technology solution with some minor exceptions. A ground vehicle has

an identity relationship relative to certain physical abstractions (i.e., a ground vehicle has

some means of propulsion). However, this is different than saying that the propulsion

subsystem will be a diesel or combustion engine or electric drive. A PLS by identity

has a loading mechanism. This perhaps can be something distinct from a crane with a

boom, a stabilization system, etc. However, if some alternative exists, it could be

equivalently expressed and linked into the upper levels of the material handling model.

That alternative mechanism should have some means of being controlled and would

integrate with the material handling intelligent control agent in the same way as the

crane’s control systems.

The “sensors” were framed to be realized by a device. They interact with the

context and produce signal data to support an area of coverage, presence, range and

bearing, identification, and tracking. However, a direct analogy can be drawn relative to

“human sensors” that perform those same functions. When considering the state of

technology relative to human capability, there are likely differences in precision and

overall intelligent performance of the sensor in conjunction with the detection agent and

task agent, but the combined allocation can be compared and assessed within a trade

space. All the sensor and agent logical objects considered together can be allocated to

machine, human or some combination thereof. When allocated to the combination, the

ALO and sensor objects would aid in the derivation of the human to machine interface.

The ALO machine realization can be either application software or the computational

equivalent (e.g., a neural network).

The most significant constraint on technology independence occurs relative to a

capability achieved by the system interoperating with some external component or

 183

system, in particular the Global Positioning System (GPS), RF communications and

mission data export and import. Though geolocation was abstracted as a desired

trajectory, the supporting performer object correlates to a GPS abstraction except for

teasing out the human and system interface. The system by itself cannot reasonably

replace GPS with another technology. Similarly, some means of communicating between

the system and the rest of the force is presumed to be very similar to the current military

radio approach, with the added presumption of both a voice and data channel. Finally, it

is also presumed that a smart system would benefit by the digital realization and transfer

of major sources of data. This data includes mission plans and orders, communication

presets, maps and mission logs. It would be required for an autonomous ground system

and currently is often utilized relative to military aircraft.

Equivalent consideration to multiple forms of behavior. The major forms of

behavior are: simple functional, state-based discrete event, continuous, and intelligent. A

MCPS has a hierarchy of computational control with a CPS layer at its base. This layer is

where discrete control interacts with continuous physical processes. The Intelligent Agent

and Detection Agents form an intelligent behavior layer on the base CPS layer. They in

turn are controlled by a higher intelligent layer of mission and task agents. Simple

functional behavior is accommodated within the CPS layer and within specific ALOs as

needed to support intelligent behavior. State-based discrete event behavior consists of

information transformation within SC2A performer objects and to a lesser extent, TC3

performer objects.

Except for simple functional behavior which can be distributed throughout, the

MCPS performer objects can be associated with a single form of behavior and associated

computation. Specific objects within SC2A and TC3 transform information, ALOs

accommodate intelligent behavior, and the CPS control objects accommodate direct

discrete control of continuous behavior. These objects are similarly visible within the

system concept model and can be linked to a specific computation units as machine

instances or human roles. These instances and roles can be aggregated into physical

solutions and the impact and contribution to mission and task performance tracked. All

 184

forms of behavior are thus accommodated and can be specifically addressed relative to

trade space assessment.

Integration of operational and system behavior. Operational task decomposition

takes place in the context of a mission assignment with detail desired trajectories linked

to a state space and goals. Specified goals link operational MOEs/MOPs of the behavior

and are embedded in the model. This can be compared to use case analysis, which may

look at similar behavior and goals, but are used to generate system functions, leaving the

use case itself anecdotal versus part of the concept design. The embedded mission

assignment is linked to METT TC variables via the associated state space that includes

the necessary context objects and attributes.

Rather than directly mapping to system functions, desired trajectories are mapped

to system performer objects or ALOs. More detailed mission or task decomposition takes

place in the context of these ALOs and their decomposition. Further system logic

decomposition is the result of the both logical structural decomposition as well as the

details of the object behavior. The eventual decomposition reaches sensor and controllers

which could be identified as system behavior. In addition, the interacting ALOs or the

horizontal logic is distinct from the vertical logic, the latter can also be defined as system

functions, to include computation and information processing. At this stage of

conceptualization however, the logic as modeled can be considered to be all system

behavior. If system performer objects are realized by human operators as physical

solutions, a distinction of operational behavior may be useful for training purposes. With

intelligent systems, distinct lines between operation and system behavior are less

meaningful.

Whether considered operational and system behavior, the horizontal interaction of

system performer objects using commands and percepts as illustrated on SysML IBDs is

the most dynamic description of the behavior. Since the signal interactions represent

horizontal interaction, this IBD conveys different information than a more standard

SysML IBD, which typically represents physical signal interactions between physical

components. This use conveys similar information to a sequence diagram with the

following distinctions:

 185

(1) Though data exchange is not shown directly, it can be found by linking
the interaction to the appropriate world state model. The data exchanged
in many instances will have complex structure (e.g., cargo content), and
not easily conveyed on a sequence diagram.

(2) Many variations are possible in the flow of commands and percepts
through the system along with variations of the data that they include. A
given command may include an entire mission assignment or one
tactical object for update. Not clear how many sequence diagrams would
be needed to convey this variation.

(3) ALOs are not typical OOAD software objects. They do not invoke a
method and await a response, rather they interact with commands and
percepts as independent actors that can operate concurrently. The
behavior does not necessarily require a sequential thread.

Activity diagrams, FFBDs, and business process modeling are all ways to

represent workflow. The workflow in this approach is received as an overall mission

assignment where it is decomposed and allocated to various ALOs. Each ALO manages

its mission state relative to that plan or assignment. The desired workflow is embedded

segmented and embedded into the ALO models as part of their respective world state of

interest.

Direct translation to component solutions. The system model is structured by

interacting performer objects. For the most part, each of the performer objects can

directly link one-to-one to a physical solution. These physical solutions could include a

specific physical mechanical component, a controller board, a sensor, or software code.

Some performer objects may also link to as an instance of a physical solution that can be

aggregated into a physical solution. These include SC2A computation objects, ALOs and

sensors. An ALO for example can be realized as software code, a neural net when

combined with a computation instance, or by a physical instance of a human performing

the ALO role. ALO and sensor physical realization need to be considered together. A

given ALO realization as a human instance may also require an associated sensor to be

realized by a human sensor of that same instance. World state models within the ALO

can also be realized whole or in part by a physical data store, though the direct link may

not be as obvious.

 186

Component Assembly Independence. One of the advantages of software OOAD is

that objects and their interactive behavior can be defined and analyzed to more granular

levels of resolution and then assembled or aggregated into programs or software

configuration items. The same principle applies to the system logic using this approach

except the logic can be realized as software code, hardware, or human instances.

Once selected, the objects can be aggregated up to higher level assemblies or

configuration items. These assemblies together with the component selections impact

how well the system achieves MOEs/MOPs as well as impact other system concerns,

such as cost and mass properties. Alternative assemblies can be considered in conjunction

with alternative physical component selections and the impacts addressed within a trade

space assessment.

Design Science Method Verification and Validation Consideration The MCPS

DM2 and associated foundational concepts applied to a MIGVS concept design is a

design science method, specifically, a design science method for concept design of cyber-

physical systems. The Validation Square (Seepersad et al. 2005) is proffered as a way to

verify and validate research of a design method. As Seepersad et al. assert for a design

method, “research validation is a process of building confidence in its usefulness with

respect to a purpose.” Table 5 shows the Validation Square, which is divided into four

quadrants with a related set of criteria. Each quadrant is used roughly in order to build

successive confidence or validation of the research method’s purpose and usefulness. The

numbered criteria in each quadrant corresponds to the same number in the dissertation

research evidence column. As Seepersad et al. explain, the criteria of Quadrant 1)

validates that the proposed design method is logically consistent. Quadrant 2) criteria

validates that the example problems are appropriate to both illustrate and verify the

design method. Quadrant 3) criteria is used to assess whether the design method produces

useful outcomes. Finally, Quadrant 4) criteria is used to determine that the design method

is useful beyond the specific case study and detailed example problems. The dissertation

design method is validated based on the total set of criteria matched with the appropriate

dissertation research evidence in Table 5.

 187

Table 5. Validation Square Criteria with Dissertation Research Evidence

Validation Square Criteria Dissertation Research Evidence
1) Theoretical
(Domain-Independent)
Structural Validation
1. Define design science
requirements
2. Literature review to show
advantages compared with other
methods.
3. Characteristics for the domain are
enumerated
4. Establish internal consistency

1. The requirements are captured in the problem statement and
research questions and include: modeling multiple forms of
behavior, technology independence, integrating operational and
system behavior, and supporting component instantiation.
2. The literature review and research value indicate there is no
current method that simultaneous achieves all the requirements
identified for the MCPS class of system and problem, particularly
the intelligence and human independent aspects of the problem.
3. Characteristics for the domain are enumerated within the
foundational concepts (e.g., goal based state behavior, state change
through interactions).
4. Both the concepts and the case study data utilize the same
modeling language (i.e., SysML). Both structure and behavior
considerations are captured in the DM2. The DM2 is consistent
with the foundation concepts which in turn are consistent with the
structure and behavior of the case study model. The structure and
behavior of the case study model are internally consistent within
and between each ALO as captured by the five integrated model
diagrams.

2) Empirical
(Domain-Specific)
Structural Validation
1. Characteristics of example
problems are similar to actual
problems
2. Example problems cover all the
needed characteristics
3. Examples produce data that can
be used to compare with other
methods

1. The performer object model encompasses a wide range of
common MIGVS logic: material handling or special mission,
mobility, IRSTA, TC3 and SC2A which includes mission command
and control. Each performer object internally models intelligent
behavior connected to a base CPS layer. The DM2 and the five
diagram types capture needed characteristics: performer and context
logical hierarchy and state, goal state mission assignments,
interactions with other performer objects, internal ALO
composition of behavior and world state models, and the ALO
internal behavior that acts on world state and interacts with
commands and percepts.
2. Each performer object covers a unique form of logic required by
a MIGVS. Each performer object internally models multiple forms
of behavior and is required: internally exhibits multiple forms of
behavior. Integrated together the performer objects model all the
forms of behavior and simultaneously achieve the requirements of
the research questions.
3. The five types of diagrams produce data that can be compared to
other methods when generalized. This includes missions, tasks,
MOEs/MOPs, operator roles, physical mechanical and control
based-functions, information management, and goal-based
intelligence.

3) Empirical
(Domain-Specific)
Performance Validation
1. Do example outcomes meet
requirements and characteristics
2. Does data support outcome
conclusions

1. The five diagram types each capture key required characteristics
as demonstrated. The five diagram types integrate with each other
and other ALOs or sensor/controller objects to meet the
requirements of the logical concept design overall.
2. Five performer objects with 34 ALOs that each model a part of
the required intelligent behavior, provide depth and breadth of
modeling sufficient to inform concept design and meet the stated
research requirements. The logic defined in a component
framework can support a trade space exploration that can include a
trade relative to the number human operators.

 188

Validation Square Criteria Dissertation Research Evidence
4) Theoretical
(Domain-Independent)
Performance Validation
1. Domains with the precise
characteristics
2. Examples of more general class
3. What characteristics are
applicable

1. Any MIGVS has nearly the exact same characteristics as the
PLS. The only exception would be lethality which has similar
characteristics and could be modeled in a similar pattern as material
handling and mobility.
2. A more general class is MCPS or any CPS that has hierarchical
control logic with a large number of states, including goal states.
3. The characteristics applicable for another domain for relevant use
are: hierarchical control logic with a base CPS layer, a dynamic or
otherwise state intensive system and external environment, and
intelligence that is goal directed and context aware.

 189

V. CONCLUSIONS AND RECOMMENDATIONS

This dissertation contributes a modeling framework capable of modeling the

complete behavior logic of cyber-physical systems as a set of interacting and abstract

component-based performer objects: agents, controllers and sensors. An advantage of the

modeling framework is all types of system objects are modeled using the same modeling

language constructs. As a result, behaviors that would be allocated to physical hardware,

software and/or human elements are all modeled, analyzed, and treated the same. The

modeling framework’s agent and component abstractions are technology and

implementation independent yet meaningful enough to capture key performance

attributes, attribute dependencies, and the key behavior logic required of the system. This

dissertation demonstrates how the modeling framework performs the initial MIGVS

concept design of system behavior. The framework’s interacting components can be

instantiated as hardware, software and/or human roles and the impact on that behavior

assessed as part of a trade space exploration during the concept design phase. Current

modeling methods are unable to treat hardware, software, and human elements on an

equal footing using a single or integrated modeling approach.

When the initial behavior or logical concept design is integrated with a 3D CAD

concept design of the physical architecture and it’s mass properties, a trade space

exploration is enabled that increases the number and type of components and related

capabilities that can be considered and therefore increases the number of possible

combinatorial system solutions. The cyber components (e.g., electronics, sensors,

software), and their contribution to operational effectiveness and system capability, will

have a visibility on par with the traditional physical-mechanical components and their

behaviors. Furthermore, the interdependencies between cyber and physical-mechanical

components can be established. The cyber components can be assembled and integrated

into a CAD physical architecture at an equivalent level of abstraction. The final concept

design can reflect both hardware and software configuration items as well as any crew

configuration. Logical design portion of this final concept design may be used just for

 190

analysis or it can become part of the system architecture or technical baseline and

retained through the life cycle.

The MCPS concept data meta-model (DM2) and associated concepts provide the

necessary perspective and framework to initially conceptualize a MIGVS. The

intelligence logic of a MIGVS is composed of a hierarchy of agent logical objects

(ALOs) operating on a base cyber-physical layer. These ALOs are state intensive; that is,

they have a state space with many variables that change as ALOs interact with each other

and with context objects. At a certain level of abstraction, this intelligent logical

hierarchy is independent of how it is physically implemented and assembled, to include

human or technology realization. The interacting ALOs model the system intelligent

behavior at that level of abstraction yet reflect component granularity below physical

assembly. As ALOs are realized by particular physical implementations and aggregated

into particular assemblies, the performance attributes of the ALOs and their dynamic

interactions become physically constrained. Each physical implementation and assembly

approach considered will change the performance. Performance changes can at least be

descriptively assessed relative to physical component and assembly selections within a

trade space exploration.

An ALO’s behavior is not determined by its previous state and a current input

(i.e., it is not simply a state intensive version of a finite state machine). ALO behavior is

determined by the relation of the current state as passed to it from a subordinate agent and

its goal state as commanded by a superior agent. The goal state requires specification for

ALO potential realization by machine versus human and to facilitate trade space

evaluation (i.e., how well does the machine perform relative to the human?). The

collective ALO goal state specifications equate to the system’s operational measures of

effectiveness or performance. An effective specification of a goal requires state and time

target measures as well as tolerances for both. It also requires a way to measure loss of

value from the target. The goal specification coupled with the component granularity of

the ALOs results in a more precise and comprehensive definition of operation behavior

while preserving solution independence.

 191

The system concept is not fully defined without including data concepts that

reflect goal state and state variables. State as reflected in data, information, or knowledge

can be categorized into three types (Evans et al. 2002): parametric as used by simple or

mathematical functions including control systems, complex structures as used in dynamic

context sensing and information processing, and symbolic as used for high level

reasoning. As Evans et al. explain, these complex data structures include spatial

geometry, maps, images, and can also include arrays and lists. The data concepts when

realized by machine must be accompanied by the necessary sensor concepts to acquire

the data. The collective intelligence of a MIGVS requires all three data types to

sufficiently understand its goals and dynamic world state and distinguishes it from typical

artificial intelligence approaches using only symbolic knowledge or data. The MIGVS

concept must include and integrate data concepts along with the physical-mechanical

concepts and cyber component concepts.

The ALO hierarchy is a cyber or computational control hierarchy that should

enable a reusable structure of application logic or software. Any MIGVS can be arranged

the same pattern as used in the case study. A mission agent is at the top level of the

hierarchy and controls task agents at the next level. Each task agent interacts with an

intelligent and detection agent layer, and they in turn control sensors and controllers.

MIGVS as a domain has similar logic across systems. For example, a PLS participating

in a convoy mission is nearly identical to a combat system participating in a tactical road

march. Maintaining local situational awareness is a common solider task within different

systems that can be realized by an IRSTA ALO. The application logical hierarchy does

not change no matter its physical realization. For example, the intelligence could be

realized: by a single computational assembly with fan out connections to the sensors and

controls, by a distributed one for one match of ALO and computational assembly, by a

one for one match of ALO with “human assembly” resulting in dozens of crew members,

or by a myriad of crew member and computation assembly combinations. To the extent

that ALOs are realized in software, the hierarchical application logic can stay the same

whether it is realized in a single program on a single computer or distributed across

 192

many. The performance can certainly be impacted as the interaction between ALOs take

different paths thought the vertical logic.

From a MIGVS domain standpoint, the application logic reusability should also

pay off in terms of generating system models with associated operational architectures

and hardware components. Standard performer and context objects structures can add

value in terms of generating system models where the operational behavior logic is

common. Where the operational performance is nearly common, then reuse of physical

implementations whether software, hardware or human, should also be a distinct

possibility. Reusable application logic together with components that conform to that

logic would enable portfolio management using rapid generation of well-specified and

high fidelity operational architectures supported by system OOAD to define feasible

systems. Advancements in capability can be specified in operational terms and system

feasibility assessed relative to existing and/or new technology.

1. Limitations

The logical modeling framework is limited by model complexity, unfamiliar

description, and lack of a supporting analytical framework. The relative higher fidelity of

the logical model as compared to more typical systems engineering modeling approaches

results in complexity that will require more time to generate. The model also has many

crosscutting relationships that must be synchronized and cannot be practically generated

without modeling language support. The native presentation is not as familiar or intuitive

as other methods such as business process modeling or functional flow modeling and

may require presentation translation, particularly for non-technical stakeholders. As a

new modeling method it does not have a ready-made analytical support tool or

framework. Not clear how discrete event simulation would be used since a given event

only results in a behavior when the current state change is significant relative to a goal

state. Agent based simulation would seem an obvious support tool, but these agents are

higher fidelity and act on complex data structures similar to an actual system. The logic

required to make a given ALO executable would approach that of a software prototype.

 193

The patterned nature and solution independent reusability of the approach may mitigate

some of these limitations.

The logical model development approach is limited by the lack of needed source

material and reliance on existing doctrine and tactics. The approach leverages the use of

design reference mission and “design reference system.” Necessary source information

may be spread out over many training procedures and other doctrine, often not quantified

sufficiently, and difficult to determine whether critical information might have been

missed. Current methods for specifying operational requirements and architectures do not

provide the necessary information for this method. Establishing an authoritative source of

the necessary requirements will take additional time. Finally, many of the advantages of

this method may be neutralized for new systems using significantly new doctrine and

tactics, particularly where the capability exceeds that of previous human operators, for

example some sort of precision maneuver. In this case, perhaps a comparative point of

departure could be used relative to the design references. Also, assuming new tactics are

not invented for each new system, this method would still apply to future upgrades and

similar systems.

2. Future Work

Three significant areas of future work are recommended. The first is centered

around the System 4+1 model shown in Figure 53 and consists of taking the initial

concept design as defined here or similarly, and define a final concept design and initiate

a development. The concept design would require concurrent development, iteration, and

the appropriate integration relationships between the following:

(1) Logical Model—physical component selection of the performer objects
to include human roles or instances. This selection would include which
ALOs would be realized as software. Test the handoff the object models
for usefulness and problem understanding for software developers.
Retain the final logical model as a decomposition bill of material
(DBOM). Define user interface solutions as needed. Update the domain
performer model as required.

 194

(2) Physical Model—harmonize DBOM component selections with concept
CAD EBOM selections. Adjust DBOM solutions as required to meet
integration and mass property constraints.

(3) Execution Model—assess ALO defined software the computational
architecture selection. Assess performance and concurrency impacts.

(4) Deployment Model—complete final concept deployment of the physical
architecture. Include software deployed to distribution computation
components and embedded networks.

The second recommended future research is to fully elaborate all types of vertical

logic. This effort succeeded in identifying SC2A tasks and trajectories and isolating the

vertical from the horizontal logic. Only an example was shown as to how ALOs connect

to computation and signal objects. All ALOs can be similarly connected to computational

and signal objects and the computational objects decomposed into its constituent “stack”

objects. The computational “stack” objects may be different for different types of ALOs,

particularly for detection agents that need to process complex data, such image

processing for recognition. Full elaboration of the computational logic would have to be

done within the framework of an execution model. The execution model may be a fully

integrated vertical and horizontal logic model with physical component selection and

attribution. A full examination of the vertical logic would require system level interrupt

handling to handle exceptions. Exceptions are likely to be the stressing case on sensor

and computational performance. Also, a full system model requires power distribution

and structural support. Both of these are a type of vertical logic that can impact horizontal

logical performance. A structural component for example must reliably execute its

purpose. If not, there is likely an impact to the performer object(s) that requires that

support to fulfill its purpose.

The third recommended future research is to take advantage of the performer

object structure and define time dependent mission reliability for the system. ALOs will

have a reliability that is only as good as the information it is utilizing. Information

reliability can be defined to be one minus the information uncertainty. This information

has both a source and a time dependency. The source dependency can be a matter of trust,

as provided from an external source, or a matter of performance as in a detection agent

 195

and sensor pair with Type I and II errors. It would be desirable to be able to tune these

errors dependent on mission rules and conditions. Information, no matter the source, will

degrade with time. A direct corollary can be drawn to hardware objects. Hardware will

have source as delivered from the factory reliability, and a time dependent aspect that

degrades with use and storage. Together these measures could be used to define a mission

reliability or expected value that could vary in real time as the mission executes.

 196

THIS PAGE INTENTIONALLY LEFT BLANK

 197

APPENDIX. PLS SYSML MODEL DIAGRAMS

These diagrams augment the diagrams shown previously. The MA diagrams were

covered comprehensively previously so what follows is for the five performer logic.

Infinite number of views are possible, so the views follow the same pattern as presented

for the mission agent and material handling. They serve the same purpose as previously

explained and are shown here for model completeness.

B. MATERIAL HANDLING

Material Handling (MH) was extensively discussed previously to illustrate the

overall model and approach.

1. MH Assigned Mission

In addition to the tasks and trajectories previously discussed, MH has the

following trajectory elaboration.

Figure 95. MH Identify Cargo Desired Trajectory

 198

Figure 96. MH Proximity Awareness Desired Trajectory

Figure 97. MH Cargo Ready Desired Trajectory

 199

Figure 98. MH Supply Awareness Desired Trajectory

Figure 99. MH Deliver Supply Desired Trajectory

 200

2. MH Logical Object Hierarchy

No additional material handling objects then already presented.

3. MH Interactions

There are no more addition MH IBDs then already presented.

4. MH Agent Internal Composition

The cargo detection agent was previously presented. The following are the other

three detection agents for material handling.

Figure 100. MH Ground Detection Agent

 201

Figure 101. MH Overhead Detection Agent

Figure 102. MH Pedestrian Detection Agent

 202

5. MH Detection Agent Behavior

In addition to the Cargo Detection Agent behavior, MH has the following

detection agent behavior:

Figure 103. MH Ground Detection Agent Behavior

Figure 104. MH Overhead Detection Agent Behavior

Figure 105. MH Pedestrian Detection Agent

 203

C. TACTICAL COMMAND CONTROL AND COMMUNICATIONS

Tactical Command Control and Communications (TC3) was only briefly

discussed previously. The full complement of diagrams is presented following.

1. TC3 Assigned Mission

Figure 106. TC3 Command Synchronization Task

Figure 107. TC3 Identify Message Content Desired Trajectory

 204

Figure 108. TC3 Generate Message Out Trajectory

2. TC3 Logical Object Hierarchy

None of the TC3 performer objects directly senses or effects the context. Its state

is determined from interpretation of the data over the network and comparison to stored

knowledge or preset knowledge (e.g., call signs). As such, there is not context logical

object hierarchy.

Figure 109. TC3 Performer Logical Object

 205

3. TC3 Interactions

Figure 110. TC3TA and TC3ICA/Detection Agent Interactions

Figure 111. TC3ICA and TC3 Detection Agent with Control and Sensing Interactions

 206

4. TC3 Agent Internal Composition

Figure 112. TC3 Task Agent Internal Composition

Figure 113. TC3 Command Synchronization DA Internal Composition

 207

Figure 114. TC3 Fragmentary Order DA Internal Composition

Figure 115. TC3 Pro Word DA Internal Composition

 208

Figure 116. TC3 Tactical Report DA Internal Composition

Figure 117. TC3ICA Internal Composition

 209

5. TC3 Agent Behavior

Figure 118. TC3 Task Agent Behavior

Figure 119. TC3 Intelligent Control Agent Behavior

 210

Figure 120. TC3 Command Synchronization DA Behavior

Figure 121. TC3 Fragmentary Order DA Behavior

Figure 122. TC3 Pro Word DA Behavior

 211

Figure 123. TC3 Tactical Report DA Behavior

D. INTELLIGENCE RECONNAISSANCE SURVEILLANCE AND TARGET
ACQUISITION

Intelligence Reconnaissance Surveillance and Target Acquisition (ISRSTA) was

only briefly discussed previously. The full complement of diagrams is presented

following.

1. IRSTA Assigned Mission

Figure 124. IRSTA Tactical Awareness Task

 212

Figure 125. IRSTA Detect Geo Location Desired Trajectory

Figure 126. IRSTA Detect Armored Vehicle (and its geolocation) Desired Trajectory

 213

Figure 127. IRSTA Detect Armed Individual Desired Trajectory

Figure 128. IRSTA Detect “IED” Desired Trajectory

 214

Figure 129. IRSTA Detect Shot Desired Trajectory

Figure 130. IRSTA Threat Awareness Desired Trajectory

 215

2. IRSTA Logical Object Hierarchy

Figure 131. IRSTA Performer Logical Objects

Figure 132. IRSTA Context Logical Objects

 216

3. IRSTA Interactions

Figure 133. IRSTA Agent and Sensor Interactions

4. IRSTA Agent Internal Composition

Figure 134. IRSTA Task Agent Internal Composition

 217

Figure 135. IRSTA Armed Individual DA Internal Composition

Figure 136. IRSTA Armed Vehicle DA Internal Composition

 218

Figure 137. IRSTA IED DA Internal Composition

Figure 138. IRSTA Shot DA Internal Composition

 219

Figure 139. IRSTA Geolocation DA Internal Composition

5. IRSTA Agent Behavior

Figure 140. IRSTA Task Agent Behavior

 220

Figure 141. IRSTA Armed Individual DA Behavior

Figure 142. IRSTA Armed Vehicle DA Behavior

Figure 143. IRSTA IED DA Behavior

 221

Figure 144. IRSTA Shot DA Behavior

Figure 145. IRSTA Geolocation DA Behavior

E. MOBILITY

Mobility model and associated diagrams were generated by a different individual

than the author as indicated in the Acknowledgment. They were generated to the concepts

defined here, but the concepts were evolving and there was no SysML style guide that

could be used. As such, there are some discrepancies of information captured and a

different look and feel overall. Chief among these are:

(1) The variable “sAct” is used in lieu of “sMOPAct” to house constraint
values. It also can contain measure of time which are separate goal
measures elsewhere.

(2) Goals and trajectories are combined into a single block.

 222

(3) A greater use of inheritance from patterns that drive a significantly
different look to constraints and trajectories. The use of inheritance also
requires more use of SysML “redefine” to alter or more definitely type
properties that are inherited.

However, all in all, they do track to the concepts pretty closely and conform to the five

modeling diagram types.

1. Mobility Assigned Mission

Figure 146. Mobility Conduct Maneuver Task

 223

Figure 147. Mobility Convoy Maneuver Desired Trajectory

Figure 148. Mobility Follow Ground Guide Desired Trajectory

 224

Figure 149. Mobility Load Maneuver Desired Trajectory

 225

Figure 150. Mobility Unload Maneuver Desired Trajectory

Figure 151. Mobility Monitor Mobility Condition Desired Trajectory

 226

Figure 152. Mobility Pass Route Point Desired Trajectory

Figure 153. Mobility Support Material Handling Desired Trajectory

 227

Figure 154. Mobility Detect Cargo Content Location

Figure 155. Mobility Detect Cargo Load Location Desired Trajectory

 228

Figure 156. Mobility Detect Fuel Level Desired Trajectory

Figure 157. Mobility Detect Ground Guide Desired Trajectory

 229

Figure 158. Mobility Detect Lead Vehicle Desired Trajectory

Figure 159. Mobility Detect Motion Desired Trajectory

 230

Figure 160. Mobility Detect Obstacle Desired Trajectory

Figure 161. Mobility Detect Dismount Desired Trajectory

 231

Figure 162. Mobility Detect Military Obstacle Desired Trajectory

Figure 163. Mobility Detect Vehicle Desired Trajectory

 232

Figure 164. Mobility Detect Vegetation Desired Trajectory

Figure 165. Mobility Detect Prime Power Health Desired Trajectory

 233

Figure 166. Mobility Detect Road Network Desired Trajectory

Figure 167. Mobility Energize PTO Desired Trajectory

 234

Figure 168. Mobility “Move To” Desired Trajectory

 235

2. Mobility Logical Object Hierarchy

Figure 169. Mobility Performer Logic Objects

 236

Figure 170. Mobility Context Logical Objects

Figure 171. Mobility Context Road Network Logical Objects

 237

Figure 172. Mobility Context Tactical Control Measures Logical Object

3. Mobility Interactions

Figure 173. Mobility Agent Interactions

 238

Figure 174. Mobility DA and Sensor Interactions

Figure 175. Mobility ICA and Controller Interactions

 239

4. Mobility Agent Internal Composition

Figure 176. Mobility Task Agent Internal Composition

 240

Figure 177. Mobility Cargo DA Internal Composition

Figure 178. Mobility Fuel Level DA Internal Composition

 241

Figure 179. Mobility Ground Guide DA Internal Composition

Figure 180. Mobility Lead Vehicle DA internal Composition

 242

Figure 181. Mobility Motion DA Internal Composition

Figure 182. Mobility Obstacle DA Internal Composition

 243

Figure 183. Mobility Primer Power Health DA Internal Composition

Figure 184. Mobility Road Network DA Internal Composition

 244

Figure 185. Mobility ICA Internal Composition

 245

5. Mobility Agent Behavior

Figure 186. Mobility Task Agent Behavior

F. SYSTEM COMMAND CONTROL AND AUTONOMICS

System Command Control and Autonomics (SC2A)

 246

1. SC2A Assigned Mission

Figure 187. SC2A Provide Autonomics Task

Figure 188. SC2A Mission Load Set Desired Trajectory

 247

Figure 189. SC2A Detect Mission and Detect Mission Data Content Desired Trajectories

Figure 190. SC2A Computation & Signal Power Up and Data Load Desired Trajectories

 248

Figure 191. SC2A Mission Log Desired Trajectories

Figure 192. SC2A Play Mission Log Desired Trajectory

 249

2. SC2A Logical Object Hierarchy

Figure 193. SC2A Performer Logical Objects

Figure 194. SC2A Context Logical Objects

 250

3. SC2A Interactions

Figure 195. SC2A Agent and Mission Agent/Convoy Commander Interactions

Figure 196. SC2A Detection Agent and Sensor Interactions

 251

Figure 197. SC2A Intelligent Control and “Controller” Interactions

 252

4. SC2A Agent Internal Composition

Figure 198. SC2A Task Agent Internal Composition

Figure 199. SC2A Mission DA Internal Composition

 253

Figure 200. SC2A Mission Data Content DA Internal Composition

Figure 201. SC2A Event DA Internal Composition

 254

Figure 202. SC2A Intelligent Control Agent Internal Composition

5. SC2A Agent Behavior

Figure 203. SC2A Task Agent Behavior

 255

Figure 204. SC2A Mission DA Behavior

Figure 205. SC2A Mission Data Content DA Behavior

Figure 206. SC2A Event DA Behavior

 256

Figure 207. SC2A Intelligent Control Agent Behavior

 257

LIST OF REFERENCES

Ackoff, Russell L. 1989. “From Data to Wisdom,” Journal of Applied System Analysis,
16: 3–9.

Agha, Gul. 1986. MIT Press Series in Artificial Intelligence. Cambridge, MA: MIT Press.

Ahmadi, Hossein, Tarek Abdelzaher, Jiawei Han, Nam Pham, and Raghu K. Ganti. 2011.
“The Sparse Regression Cube: A Reliable Modeling Technique for Open Cyber-
Physical Systems,” In IEEE/ACM Second International Conference on Cyber-
Physical Systems 87–96. DOI: 10.1109/ICCPS.2011.20.

Albus, James S. 2002. “4D/RCS A Reference Model Architecture for Intelligent
Unmanned Ground Vehicles,” Proceedings of the SPIE 16th Annual Symposium
on Aerospace/Defense Sensing, Simulation and Controls 4715Orlando, FL.
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=821736.

Albus, James S., and Alexander M. Meystel. 2001. Engineering of Mind: An Introduction
to the Science of Intelligent Systems. Wiley Series on Intelligent Systems, edited
by James S. Albus, Alexander M. Meystel, and Lofti Zadeh. New York: John
Wiley and Sons.

Albus, James S., and Anthony J. Barbera. 2004, “RCS: A Cognitive Architecture for
Intelligent Multi-Agent Systems,” Proceedings of 5th International Federation of
Automatic Control (IFAC)/EURON Symposium on Intelligent Autonomous
Vehicles Proceedings, edited by Jose Santo-Victor and M. Isabel Ribeiro, 29 (1):
87–99. Lisbon, Portugal: Published for the International Federation of Automatic
Control by Elsevier, Oxford University, 2005.

Altintas, Ilkay, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher, and
Steve Mock. 2004, “Kepler: An Extensible System for Design and Execution of
Scientific Workflows,” Proceedings of the 16th International Conference on
Scientific and Statistical Database Management 423–424. New York: IEEE
Computer Society.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9176.

Al-Hammouri, Ahmad T. 2012, “A comprehensive co-simulation platform for cyber-
physical systems,” Computer Communications 36, no.1 (Dec): 8–19.

Argente, Estefania, Vicente Julian, and Vicente Botti. 2006. “Multi-Agent System
Development Based on Organizations,” Electronic Notes in Theoretical
Computer Science, 150 (3): 55–71.

Arthur, W. Brian. 2009. The Nature of Technology. New York: Free Press, A Division of
Simon and Schuster.

http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=821736
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9176

 258

Arunachalam, M, R Arun Prakash, and R Rajesh. 2014. “A Typical Approach in
Conceptual and Embodiment Design of Foldable Bicycle,” International Journal
of Computer Applications, 87, no.19 (Feb): 0975—8887.

Aziz, Muhammad Waqar, Muhammad Rashid. 2016, “Domain Specific Modeling
Language for Cyber-physical Systems,” 18th International Conference on
Information Systems Engineering Proceedings, ICISE 2016, 29–33, Los Angeles,
California, IEEE Computer Society, July,
https://www.computer.org/csdl/proceedings/icise/2016/2287/00/index.html.

Badger, Michael, Dennis Bushmitch, Rick Cozby, John Hartwig, and Brian Hobson.
2013, “Network Capability Assessment and Standardized Measures of
Performance (MOP) Framework,” The ITEA Journal of Test and Evaluation, 34,
no.4 (December).

Baheti, Radhakisan, and Helen Gill. 2011. “Cyber-physical Systems,” The Impact of
Control Technology, 12: 161–166.

Barbacci, Mario, Mark H. Klein, Thomas A. Longstaff, and Charles B. Weinstock. 1995,
Quality Attributes, Technical Report CMU/SEI-95-TR-021, Software Engineering
Institute, Carnegie Mellon University,
https://resources.sei.cmu.edu/asset_files/TechnicalReport/1995_005_001_16427.p
df.

Behjati, Razieh, Tao Yue, Shiva Nejati, Lionel Briand, and Bran Selic. 2011, “Extending
SysML with AADL Concepts for Comprehensive System Architecture
Modeling,” Modeling Foundations and Applications 7th European Conference
Proceedings, ECMFA 2011, edited by Robert France et al. Lecture Notes in
Computer Science, 6698: 236–252. Berlin, Germany: Springer.

Bergenti, Federico, and Agostino Poggi. 2000, “Exploiting UML in the Design of Multi-
Agent Systems,” Proceedings of the ECOOP Workshop on Engineering Societies
in the Agents World 2000 (ESAW 00), edited by Andrea Omicini, Robert
Tolksdorf, and Franco Zambonelli, 1: 96–103, Berlin, Germany: Springer.

Bhave, Ajinkya, Bruce Krogh, David Garlan, and Bradley Schmerl. 2010, Multi-domain
Modeling of Cyber-Physical Systems Using Architecture Views, Institute for
Software Research Carnegie Mellon University, Report Number 11–2010
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2013&context=isr.

Blanchard, Benjamin S., and Wolter J. Fabrycky. 2011. Systems Engineering and
Analysis, Fifth Edition, New Jersey: Prentice Hall.

Booch, Grady, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim
Conallen, and Kelli A. Houston. 2007. Object-Oriented Analysis and Design with
Applications, Third Edition, pp22-23, Massachusetts: Pearson, Addison-Wesley
Object Technology Series.

https://www.computer.org/csdl/proceedings/icise/2016/2287/00/index.html
https://resources.sei.cmu.edu/asset_files/TechnicalReport/1995_005_001_16427.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/1995_005_001_16427.pdf
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2013&context=isr

 259

Bures, Tomas, Mark Klein, Danny Weyns, and Rodolfo E. Haber. 2015, “1st International
Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS
2015),” 37th IEEE International Conference on Software Engineering
Proceedings, edited by Richard L. Wexelblat et al. 2: 1009–1010,
Florence/Firenze Italy, IEEE Press.

Bures, Tomas, Petr Hnetynka, Jan Kofron, Rima Al Ali, and Dominik Skoda. 2016,
“Statistical Approach to Architecture Modes in Smart Cyber-physical Systems,”
2016 13th Working IEEE/IFIP Conference on Software Architecture, 1: 168–182,
Venice Italy, IEEE Computing Society Conference Publication Services.

Chief Information Officer, U.S. Department of Defense, DOD Architecture Framework
Version 2.02. 2010 “DODAF Formal Ontology,”
http://DODcio.defense.gov/Library/DODArchitectureFramework/DODaf20_ontol
ogy1.aspx.

Delgoshaei, Parastoo, Mark A. Austin, and Amanda J. Pertzborn. 2014. “A Semantic
Framework for Modeling and Simulation of Cyber-Physical Systems,”
International Journal on Advances in Systems and Measurements 7(3&4): 223–
238.

Deloach, Scott A., Mark F. Wood, and Clint H. Sparkman. 2001. “Multiagent Systems
Engineering,” International Journal of Software Engineering and Knowledge
Engineering, 11 no. 3 (June): 231–258.

Department of the Army. 2004. Operations Terms and Graphics, FM 1–02. Washington,
DC: Department of the Army. http://www.bits.de/NRANEU/others/amd-us-
archive/adrp1-02%282-15%29.pdf.

Department of the Army. 2008. Operations, FM 3–0. Washington, DC: Department of
the Army. http://www.bits.de/NRANEU/others/amd-us-archive/adrp3-
0%2801%29.pdf.

Department of the Army.2012. Army Universal Tasks List, FM 7–15. Washington, DC:
Department of the Army. http://www.bits.de/NRANEU/others/amd-us-
archive/adrp7-15%2803%29.pdf.

Department of the Navy. 2015. Systems Engineering Technical Review Process.
NAVAIR Instruction 4355.19E. Patuxent River, MD.
http://www.navair.navy.mil/nawctsd/Resources/Library/Acqguide/NAVAIRINST
-4355-19.pdf.

Derler, Patricia, Edward A. Lee, and Alberto L. Sangiovanni-Vincentelli. 2011,
Addressing Modeling Challenges in Cyber-Physical Systems, Technical Report
No. UCB/EECS-2011-17, Electrical Engineering and Computer Sciences,
University of California at Berkeley,
www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-17.html.

http://dodcio.defense.gov/Library/DoDArchitectureFramework/dodaf20_ontology1.aspx
http://dodcio.defense.gov/Library/DoDArchitectureFramework/dodaf20_ontology1.aspx
http://www.bits.de/NRANEU/others/amd-us-archive/adrp1-02%282-15%29.pdf
http://www.bits.de/NRANEU/others/amd-us-archive/adrp1-02%282-15%29.pdf
http://www.bits.de/NRANEU/others/amd-us-archive/adrp3-0%2801%29.pdf
http://www.bits.de/NRANEU/others/amd-us-archive/adrp3-0%2801%29.pdf
http://www.bits.de/NRANEU/others/amd-us-archive/adrp7-15%2803%29.pdf
http://www.bits.de/NRANEU/others/amd-us-archive/adrp7-15%2803%29.pdf
http://www.navair.navy.mil/nawctsd/Resources/Library/Acqguide/NAVAIRINST-4355-19.pdf
http://www.navair.navy.mil/nawctsd/Resources/Library/Acqguide/NAVAIRINST-4355-19.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-17.html

 260

Ding, Li, Pranam Kolari, Zhongli Ding, Sasikanth Avancha, Tim Finin, and Anupam
Joshi. 2005, Using Ontologies in the Semantic Web: A Survey, TR CS-05-07,
Department of Computer Science and Electrical Engineering, University of
Maryland, July, downloaded from
http://ebiquity.umbc.edu/_file_directory_/papers/209.pdf, Aug 23, 2016.

Dori, Dov. 2014, The Maturation of Model Based Systems Engineering: OPM as the ISO
Conceptual Modeling Language Standard, Massachusetts Institute of Technology
System Design and Management Webinar, June 2.
https://sdm.mit.edu/news/news_articles/webinar_060214/webinar060214.pdf.

Douglas, Bruce Powell. 2004. Real Time UML: Advances in the UML for Real-Time
Systems. 3rd ed. Boston MA: Addison-Wesley Object-technology Series, Pearson
Education Inc.

Estefan, Jeff A. 2008, “Survey of Model Based Systems Engineering (MBSE)
Methodologies,” Revision B, INCOSE MBSE Initiative.
http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf.

Evans, John M., Elena R. Messina, James S. Albus, and Craig I. Schlenoff, 2002.
“Knowledge Engineering for Real Time Intelligent Control,” Proceedings of the
International Workshop on Intelligent Knowledge Management Techniques (I—
KOMAT 2002), Crema, Italy, Sept. 16–18.

Fichman, Robert G., and Chris F. Kemerer. 1992. “Object Oriented and Conventional
Analysis and Design Methodologies,” Computer, 25 (10): 22–39.

Fritzson, Peter. 2012, Principles of Object Oriented Modeling and Simulation with
Modelica, Open Source Modelica Publication Tutorial, downloaded from
www.openmodelica.org on Aug 13, 2016.

Garlan, David, Robert T. Monroe, and David Wile. 2000. “Acme: Architectural
Description of Component-Based Systems,” Foundations of Component Based
Systems, edited by Gary T. Leavens and Murali Sitaraman, 68: 47–68, New York,
NY, Cambridge University Press.

Giachetti, Ronald E. 2010. Design of Enterprise Systems: Theory, Architecture and
Methods. Florida: CRC Press, pp 60–62.

Giachetti, Ronald E. 2015. “Evaluation of the DODAF’s Meta Model’s Support of
Systems Engineering,” Complex Adaptive Systems Publication 5, Procedia
Computer Science 61: 254–260.

Goedicke M. 1990. “Paradigms of modular system development,” Chapter 1, Managing
Complexity in Software Engineering, Edited by Dr. R.J. Mitchell, Peter
Peregrinus Ltd. On behalf of the Institution of Electrical Engineers.

http://ebiquity.umbc.edu/_file_directory_/papers/209.pdf
https://sdm.mit.edu/news/news_articles/webinar_060214/webinar060214.pdf
http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf
http://www.openmodelica.org/

 261

Graja, Imen, Slim Kallel, Nawal Geurmouche, and Ahmed Hadj Kacem. 2016.
“BPMN4CPS: A BPMN extension for modeling Cyber-Physical Systems,” 25th
IEEE Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises WETICE-2016, edited by Sumitra M. Reddy and Walid Gaaloul 1:
152–157. Paris France, IEEE Computer Society Conference Publishing Services.

Gunes, Volkan, Steffen Peter, Tony Givargis, and Frank Vahid. 2014. “A Survey on
Concepts, Applications and Challenges in Cyber-Physical Systems,” KSII
Transactions on Internet and Information Systems 8 no. 12 (December): 4242–
4268. http://www.itiis.org/digital-library/manuscript/894,
doi.10.3837/tiis.2014.12.001.

Hart, Laura E. 2015, Introduction to Model-Based Systems Engineering and SysML,
Delaware Valley Chapter INCOSE Meeting, presentation copyright Lockheed
Martin Corporation. https://www.incose.org/docs/default-source/delaware-
valley/mbse-overview-incose-30-july-2015.pdf.

Hause, Matthew, and Paul Pearce. 2012. “ISO-15288, OOSEM and Model-Based
Submarine Design.” SETE APCOSE 2012.
http://www.omgsysml.org/Pearce_Hause_ISO-15288_OOSEM_and_Model-
Based_Submarine_Design_SETE_APCOSE_20121.pdf.

Henry, Stephen M., Lucas A. Waddell, and Mike R. DiNunzio. 2016. “The Whole
System Trades Analysis Tool for Autonomous Ground Systems,” 2016 NDIA
Ground Vehicle Systems Engineering and Technology Symposium, Aug 2–4.

Hevner, Alan R., Salvatore T. March, Jinsoo Park, and Sidhu Ram, 2004. “Decision
Science in Information Systems Research,” Management Information Systems
Quarterly 28(1): 75–105.

Hewitt, Carl. 1977, “Viewing control structures as patterns of passing messages,” Journal
of Artificial Intelligence 8(3): 323–364.

Hoffmann, Hans-Peter Ph.D. 2011. Systems Engineering Best Practices with the Rational
Solution for Systems and Software Engineering Deskbook Release 3.1.2, IBM
Software Group. http://www-
01.ibm.com/support/docview.wss?uid=swg27023356&aid=1.

Hudak, John, and Peter Feiler. 2007. Developing AADL Models for Control Systems: A
Practitioner’s Guide, Software Engineering Institute, Technical Report
CMU/SEI-2007-TR-014, ESC-TR-2007-014.
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2007_005_001_14891.p
df.

Iivari, Juhani. 2007. “A Paradigmatic Analysis of Information Systems as a Design
Science,” Scandinavian Journal of Information Systems 19(2): 39–64.

http://www.itiis.org/digital-library/manuscript/894
https://www.incose.org/docs/default-source/delaware-valley/mbse-overview-incose-30-july-2015.pdf
https://www.incose.org/docs/default-source/delaware-valley/mbse-overview-incose-30-july-2015.pdf
http://www.omgsysml.org/Pearce_Hause_ISO-15288_OOSEM_and_Model-Based_Submarine_Design_SETE_APCOSE_20121.pdf
http://www.omgsysml.org/Pearce_Hause_ISO-15288_OOSEM_and_Model-Based_Submarine_Design_SETE_APCOSE_20121.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg27023356&aid=1
http://www-01.ibm.com/support/docview.wss?uid=swg27023356&aid=1
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2007_005_001_14891.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2007_005_001_14891.pdf

 262

Iivari, Juhani. 2015, “Distinguishing and Contrasting Two Strategies for Design Science
Research,” European Journal of Information Systems 24(1): 107–115.

JC3IEDM. 2007, The Joint C3 Information Exchange Data Model Metamodel Version
3.1 Annex G2, NATO Multilateral Interoperability Programme.

Jensen, Jeff C., Danica H. Chang, and Edward A. Lee. 2011. “A Model-Based Design
Methodology for Cyber-Physical Systems,” Proceedings First IEEE Workshop on
Design, Modeling and Evaluation of Cyber-Physical Systems (CyPhy) 1: 1666–
1671.

Jha, Susmit, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. “Synthesizing
Switching Logic for Safety and Dwell-Time Requirements,” Proceedings of the
1st IEEE/ACM International Conference on Cyber-Physical Systems (ICCPS
2010) 1: 22–31.

Jirkovsky, Vaclav, Marek Obitko, and Vladimir Marik. 2017. “Understanding Data
Heterogeneity in the Context of Cyber-Physical Systems Integration.” IEEE
Transactions on Industrial Informatics 13(2): 660–667.

Jobst, Martin Erich, and Christian Prehofer. 2016. “Towards Hierarchical Information
Architectures in Automotive Systems,” 3rd International Workshop on Emerging
Ideas and Trends in Engineering of Cyber-Physical Systems (EITEC), Conference
location Vienna Austria. DOI: 10.1109/EITEC.2016.7503695.

Khaitan, Siddhartha Kumar, and James D. McCalley. 2015. “Design Techniques and
Applications of Cyberphysical Systems: A Survey,” IEEE Systems Journal 9(2):
350–365.

Kruchten, Phillippe. 2004. The Rational Unified Process: An Introduction 3rd Edition,
Massachusetts: Pearson, Addison-Wesley Professional.

Kruger, K., and A.H. Basson. 2013. “Multi-agent Systems vs IEC 61499 for Holonic
Resource Control in Reconfigurable Systems,” Forty Sixth CIRP Conference on
Manufacturing Systems Procedia CIRP, edited by Pedro F. Cunha, 7: 503–508.
https://www.sciencedirect.com/journal/procedia-cirp/vol/7.

INCOSE. 2007. INCOSE SE Vision 2020, Technical Report INCOSE-TP-2004-004-02.
http://sebokwiki.org/wiki/INCOSE_Systems_Engineering_Vision_2020.

Lee, Edward A. 2003, “Model-Driven Development—From Object-Oriented Design to
Actor-Oriented Design,” Workshop on Software Engineering for Embedded
Systems: From Requirements to Implementation (The Monterey Workshop),
Chicago. September 24, 2003.
https://www.cs.uic.edu/~shatz/SEES/Schedule.htm.

https://www.sciencedirect.com/journal/procedia-cirp/vol/7
http://sebokwiki.org/wiki/INCOSE_Systems_Engineering_Vision_2020
https://www.cs.uic.edu/%7Eshatz/SEES/Schedule.htm

 263

Lee, Edward A. 2008. Cyber-Physical Systems: Design Challenges, Technical Report
Number UCB/EECS-2008-8, January 23, downloaded from
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html .

Lee, Edward A., and Sanjit A. Seshia. 2017. Introduction to Embedded Systems, A Cyber-
Physical System Approach, Second Edition. Cambridge, MA: MIT Press,

Lee, Edward A., and Stephen Neuendorffer. 2004. Classes and Subclasses in Actor-
Oriented Design,” Conference on Formal Methods and Models for Codesign
(MEMCODE), San Diego, CA. June 22–25, 2004.
https://ptolemy.eecs.berkeley.edu/publications/papers/04/Classes/Lee_Classes.pdf
.

Lee, Jay, Behrad Bagheri, and Hung-An Kao. 2014. “A Cyber-Physical Systems
architecture for Industry 4.0-based manufacturing systems,” Manufacturing
Letters 3: 18–23.

Leitao, Paulo, Vladimir Marik, and Pavel Vrba. 2013. “Past, Present, and Future of
Industrial Agent Applications,” IEEE Transactions on Industrial Informatics 9(4):
2360–2372.

Loos, Sarah M., Andre Platzer, and Ligia Nistor. 2011. “Adaptive Cruise Control:
Hybrid, Distributed, and Now Formally Verified,” Proceedings 17th International
Symposium of Formal Methods, edited by Michael Butler and Wolfram Schulte,
42–56. Springer http://www.springer.com/la/book/9783642214363.

Lukasiewycz, Martin, Sebastian Steinhorst, Florian Sagstetter, Wanli Chang, Peter
Waszecki, Matthias Kauer, and Samarjit Chakraborty. 2012. “Cyber-Physical
Systems Design for Electric Vehicles,” 15th Euromicro Conference on Digital
System Design (Cesme Ismer, Turkey), 477–484
http://ieeexplore.ieee.org/abstract/document/6386930/.

Lynch, Kevin, Randall Ramsey, George Ball, Dale B. Larkin, Matt Schmit, Kyle Collins,
Justin Knight, Ted Bapty, Jason Scott. 2016, “Ontology-Driven Metamodel
Validation in Cyber-Physical Systems,” AIAA Modeling and Simulation
Technologies Conference 2016, AIAA Aviation Forum.
https://doi.org/10.2514/6.2016-4005.

Ma, Zhiqiang, Xiao Fu, and Zhenhua Yu. 2012. “Object-Oriented Petri Nets Based
Formal Modeling for High-Confidence Cyber-Physical Systems,” 8th
International Conference on Wireless Communications, Networking and Mobile
Computing WiCOM 2012. DOI: 10.1109/WiCOM.2012.6478590.

Malan, Ruth, and Dana Bredemeyer. 2001. Functional Requirements and Use Cases,
Bredemeyer Consulting, White Paper,
http://www.bredemeyer.com/pdf_files/functreq.pdf.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html
https://ptolemy.eecs.berkeley.edu/publications/papers/04/Classes/Lee_Classes.pdf
https://ptolemy.eecs.berkeley.edu/publications/papers/04/Classes/Lee_Classes.pdf
http://www.springer.com/la/book/9783642214363
http://ieeexplore.ieee.org/abstract/document/6386930/
https://doi.org/10.2514/6.2016-4005
http://www.bredemeyer.com/pdf_files/functreq.pdf

 264

Magureanu, Gabriela, Madalin Gavrilescu, Dan Pescaru, and Alex Doboli. 2010.
“Towards UML Modeling of Cyber-Physical System: A Case Study for Gas
Distribution,” Proceedings 8th IEEE International Symposium on Intelligent
Systems and Informatics. doi:10.1109/SISY.2010.5647314.

Mayk, Israel, and William C. Regli (Editors). 2006. Agent Systems Reference Model,
Technical Report for DOD Contract #DAAB07-01-9-L504: Version 1.0a. Drexel
University, Camden NJ. http://www.fipa.org/docs/ACIN-reference_model-
v1a.pdf.

Merson, Paulo. 2009. Data Model as an Architectural View, Technical Note CMU/SEI-
2009-TN-024, Carnegie Mellon Software Engineering Institute,
http://repository.cmu.edu/sei/285/.

MIL-STD-881C, 2011, Department of Defense Standard Practice Work Breakdown
Structures for Defense Materiel Items, AMSC 9213, October 3.

Neema, Sandeep, Jason Scott, and Ted Bapty. 2015. CyPhyML Language in the META
Toolchain, Technical Report ISIS-15-104, Institute for Software-Integrated
Systems, Vanderbilt University
https://pdfs.semanticscholar.org/e075/648ed1c76580ba3c53cf090c5cc778cd06ac.
pdf.

NDIA. 2011. Final Report Model Based Engineering (MBE), Subcommittee, Jeff
Bergenthal (Subcommittee Lead), NDIA Systems Engineering Division M&S
Division. https://www.ndia.org/-/media/sites/ndia/meetings-and-events/3187-
sullivan/divisions/systems-engineering/modeling-and-simulation/reports/model-
based-engineering.ashx.

No Magic Inc. 2015, Magic Draw Users Manual, Version 18.1, No Magic Inc., page 673,
Figure 436.

NGAUS, 2014, NGAUS (National Guard Association of the United States) FY2014 Fact
Sheet, downloaded on Mar23 2016 from
http://www.ngaus.org/sites/default/files/AbramsFactSheetFY14.pdf.

NIST. 2013, Foundations for Innovation in Cyber-Physical Systems, Workshop Report,
prepared by Energetics Inc for National Institute for Standards and Technology,
Columbia, MD https://www.nist.gov/sites/default/files/documents/el/CPS-
WorkshopReport-1-30-13-Final.pdf.

NSF 2015. Cyber-Physical System Vision Statement Working Draft, National Science
Foundation, Directorate for Computer & Information Science & Engineering,
https://www.nitrd.gov/nitrdgroups/images/6/6a/Cyber_Physical_Systems_(CPS)_
Vision_Statement.pdf.

http://www.fipa.org/docs/ACIN-reference_model-v1a.pdf
http://www.fipa.org/docs/ACIN-reference_model-v1a.pdf
http://repository.cmu.edu/sei/285/
https://pdfs.semanticscholar.org/e075/648ed1c76580ba3c53cf090c5cc778cd06ac.pdf
https://pdfs.semanticscholar.org/e075/648ed1c76580ba3c53cf090c5cc778cd06ac.pdf
https://www.ndia.org/-/media/sites/ndia/meetings-and-events/3187-sullivan/divisions/systems-engineering/modeling-and-simulation/reports/model-based-engineering.ashx
https://www.ndia.org/-/media/sites/ndia/meetings-and-events/3187-sullivan/divisions/systems-engineering/modeling-and-simulation/reports/model-based-engineering.ashx
https://www.ndia.org/-/media/sites/ndia/meetings-and-events/3187-sullivan/divisions/systems-engineering/modeling-and-simulation/reports/model-based-engineering.ashx
http://www.ngaus.org/sites/default/files/AbramsFactSheetFY14.pdf
https://www.nist.gov/sites/default/files/documents/el/CPS-WorkshopReport-1-30-13-Final.pdf
https://www.nist.gov/sites/default/files/documents/el/CPS-WorkshopReport-1-30-13-Final.pdf
https://www.nitrd.gov/nitrdgroups/images/6/6a/Cyber_Physical_Systems_(CPS)_Vision_Statement.pdf
https://www.nitrd.gov/nitrdgroups/images/6/6a/Cyber_Physical_Systems_(CPS)_Vision_Statement.pdf

 265

O’Brien, Liam, Len Bass, and Paulo Merson. 2005. Quality Attributes and Service-
Oriented Architectures, Technical Note CMU/SEI-2005-TN-014, Software
Engineering Institute, Carnegie Mellon University.
http://repository.cmu.edu/sei/449/.

Odell, James, H. Van Dyke Parunak, and Bernhard Bauer. 2000. “Extending UML for
Agents,” Proceedings of the Agent-Oriented Information Systems Workshop at the
17th National conference on Artificial Intelligence, 3–17.
https://www.aaai.org/Press/Proceedings/aaai00.php.

OMG MBSE Wiki. 2011,”INCOSE Object Oriented Systems Engineering Methodology
(OOSEM),” Last modified April 25
http://www.omgwiki.org/MBSE/doku.php?id=mbse:incoseoosem.

Pang, Cheng, Wenbin Dai, and Valeriy Vyatkin. 2015. “Towards IEC 61499 Models of
Computation in Ptolemy II,” Industrial Electronics Society IECON2015, 41st
Annual Conference, 1988–1993 DOI:10.1109/IECON.2015.7392392.

Peffers, Ken, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatterjee. 2008. “A
Design Science Research Methodology for Information Systems Research,”
Journal of Management Information Systems 24 no. 3 (Winter): 45–77.

Poole, David, and Alan Mackworth. 2010. Artificial Intelligence: Foundations of
Computational Agents, Cambridge University Press, accessed from
http://artint.info/index.html.

Ptolemy II, 2014, System Design, Modeling, and Simulation Using Ptolemy II, First
Edition, Version 1.0.2, Ptolemaeus, Claudius (Editor), Ptolemy.org,
http://ptolemy.org/systems.

Rajhans, Akshay, Ajinkya Bhave, Ivan Ruchkin, Bruce H. Krogh, David Garlan, Andre
Platzer, and Bradley Schmerl. 2014. “Supporting Heterogeneity for Cyber-
Physical Systems Architectures,” IEEE Transactions on Automatic Control 59,
no. 12 (December) 3178–3193.

Rational 1998. Rational Unified Process Best Practices for Software Development
Teams, Rational Software White Paper, TP026B, Rev 11/01, Rational Software
Corporation.
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/
1251_bestpractices_TP026B.pdf.

Regli, William C., Israel Mayk, Christopher T. Cannon, Joseph B. Kopena, Robert N.
Lass, William M. Mongan, Duc N. Nguyen, Jeff K. Salvage, Evan A. Sultanik,
and Kyle Usbeck. 2014. “Development and Specification of a Reference
Architecture for Agent-Based Systems,” IEEE Transactions on Systems, Man and
Cybernetics: Systems 44 (2): 146–161.

http://repository.cmu.edu/sei/449/
https://www.aaai.org/Press/Proceedings/aaai00.php
http://www.omgwiki.org/MBSE/doku.php?id=mbse:incoseoosem
http://artint.info/index.html
http://ptolemy.org/systems
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf

 266

Riff, Richard. 2010, A Global PLM strategy in Ford Motor Company, Collaboration &
Interoperability Congress, May3-5, downloaded from www.mcadcafe.com, on
Aug 21, 2016.

Ross, Adam, and Daniel E. Hastings. 2005. “The Tradespace Exploration Paradigm,”
INCOSE International Symposium, 15 (1): 21–35.
http://onlinelibrary.wiley.com/doi/10.1002/iis2.2005.15.issue-1/issuetoc.

Ross, Douglas T. 1977. “Structured Analysis: A Language for Communicating Ideas,”
IEEE Transactions on Software Engineering SE-3 no. 1 (January): 16–34.

Russell, Stuart, and Peter Norvig. 2003. Artificial Intelligence: A Modern Approach. 2nd
ed. Upper Saddle River, NJ: Prentice Hall Series in Artificial Intelligence,
Pearson Education Inc.

Rzevski, George. 2003, “On conceptual design of intelligent mechatronic systems,”
Mechatronics 13 (10): 1029–1044.

Salazar, Luis A. Cruz, Oscar A. Rojas Alvarado. 2014, “The Future of Industrial
Automation and IEC 61499 Standard,” 2014 3rd International Congress of
Engineering Mechatronics and Automation (CIIMA), Cartagena, Columbia.
10.1109/CIIMA.2014.6983434.

Sanchez, Jose L. Fernandez. 2012, An Integrated Systems and Software Engineering
Process (ISE&PPOOA), Autonomous Systems Laboratory (ASLab), Technical
University of Madrid
http://tierra.aslab.upm.es/public/index.php?option=com_content&task=category&
sectionid=6&id=19&Itemid=41.

Sangiovanni-Vincentelli, Alberto. 2008. “Is a Unified Methodology for System-Level
Design Possible?” IEEE Design & Test of Computers 25 (4): 346–357.

Sasidharan, Swaytha, Andrey Somov, Abdur Rahim Biswas, and Raffaele Giaffreda.
2014. “Cognitive Management Framework for Internet of Things—A Prototype
Implementation,” 2014 IEEE World Forum on Internet of Things (WF IoT)
Proceedings 538–543.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6784568.

Schmerl, Bradley, and David Garlan. 2004. “AcmeStudio: Supporting Style-Centered
Architecture Development,” Proceedings of the 26th International Conference on
Software Engineering 704–705. Edinburgh, Scotland. DOI:
10.1109/ICSE.2004.1317401.

Seepersad, Carolyn C., Kjartan Pedersen, Jan Emblemsvag, Reid Bailey, Janet. K. Allen,
and Farrokh Mistree. 2005. The Validation Square: How Does One Verify and
Validate a Design Method, ASME Press, New York, NY, 2005
https://www.me.utexas.edu/~ppmdlab/files/ccs.valid.square.Jan05.pdf.

http://www.mcadcafe.com/
http://onlinelibrary.wiley.com/doi/10.1002/iis2.2005.15.issue-1/issuetoc
http://tierra.aslab.upm.es/public/index.php?option=com_content&task=category§ionid=6&id=19&Itemid=41
http://tierra.aslab.upm.es/public/index.php?option=com_content&task=category§ionid=6&id=19&Itemid=41
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6784568
https://doi.org/10.1109/ICSE.2004.1317401
https://www.me.utexas.edu/%7Eppmdlab/files/ccs.valid.square.Jan05.pdf

 267

SEI (Software Engineering Institute). 2016, SEI Product Line Bibliography, White Paper,
Carnegie Mellon University, https://resources.sei.cmu.edu/library/asset-
view.cfm?assetID=513798.

Semy, Salim K., Pulvermacher, Mary K., and Orbst, Leo J. 2004. Toward the Use of an
Upper Ontology for U.S. Government and U.S. Military Domains: An Evaluation,
MITRE Technical Report, Document Number MTR 04B0000063.
https://www.mitre.org/publications/technical-papers/toward-the-use-of-an-upper-
ontology-for-us-government-and-us-military-domains-an-evaluation.

Shames, Peter M., and Marc A. Sarrel. 2015. “A Modeling Pattern for Layered System
Interfaces,” 25th Annual INCOSE International Symposium (IS2015), Seattle,
WA. July 13–16.

Shoham, Yoav. 1993. “Agent-oriented programming,” Artificial Intelligence 60 (1): 51–
92.

Simon, Herbert A. 1962. “The Architecture of Complexity,” Proceedings of the
American Philosophical Society 106 no. 6 (December): 467–82.

Smith, Barry, Waclaw Kusnierczyk, Daniel Schober, and Werner Ceusters. 2006.
“Towards a Reference Terminology for Ontology Research and Development in
the Biomedical Domain,” Proceedings for KR-MED 2006 Biomedical Ontology in
Action, 222: 57–65, Baltimore, MD: CEUR.

.Sorouri, Majid, Sandeep Patil, Zoran Salcic, and Valeriy Vyatkin. 2015. “Software
Composition and Distributed Operation Scheduling in Modular Automated
Machines,” IEEE Transactions on Industrial Informatics, 11 no. 4 (August): 865–
878. DOI: 10.1109/TII.2015.2430836.

Spero, Eric, Michael Avera, Pierre Valdez, and Simon Goerger. 2015. Tradespace
Exploration for the Engineering of Resilient Systems, Technical Report ARL-TR-
7288, U.S. Army Research Laboratory, Defense Technical Information Center,
May.

Stumpf, Ondrej, Tomas Bures, and Vladimir Matena. 2015. “Security and Trust in Data
Sharing Smart Cyber-Physical Systems,” Proceedings of the European
Conference on Software Architecture Workshops, edited by Ivica Cmkovic,
Dubrovnik/Cavtat, Croatia. DOI: http://doi.acm.org/10.1145/2797433.2797451.

Tatikonda, M.V., and U. Wemmerlov. 1992. “Adoption and Implementation of group
technology classification and coding systems; insights from seven case studies,”
Internal Journal of Production Research, 30 (9): 2087–2110.

Thramboulidis, Kleanthis. 2010. “The 3+1 SysML View-Model in Model Integrated
Mechatronics,” Journal Software Engineering & Applications 3 (February): 109–
118. www.SciRP.org/journal/jsea.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=513798
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=513798
https://www.mitre.org/publications/technical-papers/toward-the-use-of-an-upper-ontology-for-us-government-and-us-military-domains-an-evaluation
https://www.mitre.org/publications/technical-papers/toward-the-use-of-an-upper-ontology-for-us-government-and-us-military-domains-an-evaluation
http://doi.acm.org/10.1145/2797433.2797451
http://www.scirp.org/journal/jsea

 268

Topper, J. Stephen, and Nathaniel C. Horner. 2013. Model-Based Systems Engineering in
Support of Complex Systems Development, John Hopkins APL Technical Digest,
Volume 32, Number 1. http://techdigest.jhuapl.edu/td/td3201/32_01-topper.pdf.

Tveit, Amund. 2001. “A Survey of Agent-Oriented Software Engineering,” Computer
Science Graduate Student Conference (SCGSC), Norwegian University of
Science and Technology (NTNU).
http://csgsc.idi.ntnu.no/2001/pages/papers/atveit.pdf.

Van Brussel, Hendrik, Jo Wyns, Paul Valckenaers, Luc Bongaerts, and Patrick Peeters.
1998. “Reference architecture for holonic manufacturing systems: PROSA,”
Computers in Industry 37 (3): 255–274.

Van Ruijven, L.C. 2013. “Ontology for Systems Engineering,” Procedia Computer
Science 160: 383–392. Conference on System Engineering Research, CSER’13.
https://ac.els-cdn.com/S1877050913000410/1-s2.0-S1877050913000410-
main.pdf?_tid=cbb7ed82-8eb1-4e4e-a926-
df8e34a5243d&acdnat=1520115885_6be4d1ce9391033b64b0a7a86ec6f843.

Vyatkin, Valeriy, Cheng Pang, and Stavros Tripakis. 2015. “Towards Cyber-physical
Agnosticism by Enhancing IEC 61499 with PTIDES Models of Computation,”
41st Annual Conference of the IEEE Industrial Electronics Society (IECON2015)
01970-01975. http://ieeexplore.ieee.org/document/7392389/.

Wagh, Aditya, Xu Li, Jingyan Wan, Chunming Qiao, and Changxu Wu. 2011. “Human
Centric Data Fusion in Vehicular Cyber-Physical Systems,” Proceedings IEEE
First International Workshop on Cyber-Physical Networking Systems 695–700.
http://cse.unl.edu/~byrav/INFOCOM2011/workshops/papers/p695-wagh.pdf
DOI: 10.1109/INFCOMW.2011.5928763.

Wagner, David A., Matthew B. Bennett, Robert Karban, Nicolas Rouquette, Steven
Jenkins, and Michel Ingham. 2012. “An Ontology for State Analysis:
Formalizing the Mapping to SysML.” Aerospace Conference, 2012 IEEE, 1–16.
Big Sky, MT. DOI: 10.1109/AERO.2012.6187335.

Wan, Jiang, Arquimedes Canedo, and Mohammad Abdullah Al Faruque. 2017. “Cyber-
Physical Codesign at the Functional Level for Multidomain Automotive
Systems,” IEEE Systems Journal 11 (4): 2949–2959.

Willems, Jan C. 2007. “The behavioral approach to open and interconnected systems,”
IEEE Control Systems Magazine, 27 no. 6 (December): 46–99.

Woodbridge, Michael, Nicholas R. Jennings, and David Kinny. 2000. “The Gaia
Methodology for Agent-Oriented Analysis and Design,” Journal Autonomous
Agents and Multi-Agent Systems 3 no. 3 (September): 285–312.

http://techdigest.jhuapl.edu/td/td3201/32_01-topper.pdf
http://csgsc.idi.ntnu.no/2001/pages/papers/atveit.pdf
https://ac.els-cdn.com/S1877050913000410/1-s2.0-S1877050913000410-main.pdf?_tid=cbb7ed82-8eb1-4e4e-a926-df8e34a5243d&acdnat=1520115885_6be4d1ce9391033b64b0a7a86ec6f843
https://ac.els-cdn.com/S1877050913000410/1-s2.0-S1877050913000410-main.pdf?_tid=cbb7ed82-8eb1-4e4e-a926-df8e34a5243d&acdnat=1520115885_6be4d1ce9391033b64b0a7a86ec6f843
https://ac.els-cdn.com/S1877050913000410/1-s2.0-S1877050913000410-main.pdf?_tid=cbb7ed82-8eb1-4e4e-a926-df8e34a5243d&acdnat=1520115885_6be4d1ce9391033b64b0a7a86ec6f843
http://ieeexplore.ieee.org/document/7392389/
http://cse.unl.edu/%7Ebyrav/INFOCOM2011/workshops/papers/p695-wagh.pdf

 269

Zimmerman, Hubert. 1980. “OSI Reference Model—The ISO Model of Architecture for
Open Systems Interconnection,” IEEE Transactions on Communications Com-28
no. 4 (April): 425–432.

 270

THIS PAGE INTENTIONALLY LEFT BLANK

 271

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	(1) Performer and Context Objects—as indicated, the world from the system perspective is composed of these objects. They have attributes that determine their state and are abstractions of some underlying physical reality. The system performer objects ...
	(2) Goal-Based Trajectories are a desired or commanded path through a given world state space. Missions can be organized into a set of tasks which in turn can be organized into an ordered set of these desired trajectories. Mission orders or plans can ...
	(3) Agent Logical Object (ALO) is a system performer object based on a granular intelligent or human operator role. Each ALO stores an assigned mission of goal-based trajectories and interacts with other ALOs via command and percepts. ALOs initiate be...
	(4) Horizontal Interactions—Interactions in a computational hierarchy can be distinguished between horizontal based on like data use at equivalent hierarchical levels, and vertical based on transforming the data (Shames and Sarrel. 2015) for use betwe...

	I. introduction
	A. background and Motivation
	1. An Historical Perspective on System Behavior Logic
	2. Model-Based System Concept Design
	3. Summary
	(1) Solution Independence
	(2) Integrate operational and system behavior
	(3) Model intelligent behavior
	(4) The ability to directly reason about state
	(5) Component objects that can directly translate to component implementation
	(6) Equivalent consideration to human, software, hardware and physical-mechanical behavior and their component abstractions
	(7) Enable component assembly alternatives
	(1) Capture of intelligent behavior
	(2) Specification of operational tasks not associated with unit command
	(3) Task allocation to operator versus machine
	(4) Trade off analysis of cyber and physical capability and components
	(5) Sufficient logical behavior analysis prior physical architecture decisions
	(6) Decomposition and allocation of MOEs/MOPs for behavior
	(7) Descriptive methods that inform product development with sufficient behavior comprehensiveness.

	B. Problem statement
	C. Research scope and Objectives
	(1) System Performer Objects
	(2) Context Objects
	(3) System Connected context objects like payload and operating resources
	(4) Missions defined by Goals that reflect a desired trajectory through the state space
	(5) Agent Logical Objects that are a specialized type of performer objects
	(6) Behavior as state change driven by interactions between objects

	D. Research questions
	(1) Is independent of specific technological solutions, to include any human operator(s)?
	(2) Gives equivalent consideration of functional, state based discrete, state based continuous, and intelligent behavior?
	(3) Integrates operational and system behavior?
	(4) Enables direct translation to component solutions with scalability and modularity?
	(5) Is independent of a particular component assembly approach?

	E. research Value and Method
	a. Problem Identification and Motivation
	b. Define Solution Objectives
	c. Create the Meta-artifacts
	d. Generate the artifact from the meta-artifacts
	e. Demonstrate and verify with a design artifact that the meta-design addresses the problem and meets the solution objectives
	(1) Whether the concept design initial agent and object oriented model was both technologically neutral and a model of the understood operational behavior.
	(2) Whether the all forms of behavior are represented in the model.
	(3) The overall usefulness of the meta-design in generating the system concept design

	f. Interpret and Communicate the Results
	(1) Operational and requirements source data
	(2) Convoy mission thread analysis
	(3) General SysML modeling techniques and procedures
	(4) Comment and feedback on the researcher’s meta-design and case study SysML model

	II. Prior Work
	A. General system architecture approaches and methods
	1. Domain Models
	2. Model-Based System Architecture
	a. INCOSE Object Oriented Systems Engineering Methodology (OOSEM)
	(1) Compatibility with object oriented analysis and design (OOAD)—though a full set of reasons why this compatibility is desired nor the original objectives of OOAD are not articulated, many are stated (OMG MBSE Wiki 2011) or can be inferred: use cas...
	(2) Use of general purpose modeling language, particularly UML/SysML—the advantages of a general purpose modeling language such as SysML over a niche language is its potential to capture a wider market and therefore offer a more expansive ecosystem (t...
	(3) Multi-Levels of architecture abstraction—the 2nd pyramid view (House and Pearce 2012) in Figure 9 shows multiple view into an architecture that progress through an OOSEM process. In addition to the use cases, it introduces a functional architectur...

	b. IBM Rational Rhapsody and Rational Harmony for SE
	(1) Integration with real time embedded components—rather than the more general objective of integration with software, this methodology has a strong focus on embedded components or what it terms as systems that are highly state based. This leads to m...
	(2) Behavior diagrams applied to use cases—all three SysML behavior diagrams: activity, sequence and statecharts are considered necessary because of their different strengths to fully elaborate the internal functions and behaviors required of the arch...
	(3) Use cases for “logical decomposition” - decompose functions and operations using multiple behavior views, use cases baseline system requirements and provide behavior (and therefore also function) allocation to architecture components.
	(4) Design concept and design synthesis—The design concept model identified the major physical components. Design synthesis adds weighting/criteria to the model to evaluate major alternatives. Once major components are defined, detailed design defin...
	(5) Architecture visualization and verification—use the model description for visual verification, animation, automatic generation of sequence diagrams.
	(6) Conceptualization Modeling—in RUP terms this would be part of inception and elaboration as well as iterative development. Key idea being that a whole model of the system is created relatively quickly in the development and then refined and elabora...
	(7) Separation of Concerns/Software Frameworks—though often implied or sometimes even explicitly referred to in RUP methodology and associated concepts, separation of concerns deserves its own treatment since it leads to the concept of views (Goedicke...

	c. Jet Propulsion Laboratory (JPL) State Analysis
	(1) Systems and software engineering interdependence modeling for complex systems—as systems have become more complex, reliance on functional based methods and narrative requirements are no longer sufficient between system and software design. A model...
	(2) Complex or multiple interacting control systems—the domain of interest is not simply real time or closed loop control, but multiple interacting control systems that need to adapt to goals or user input, uncertainty and faults.
	(3) Goal based behavior is integrated into the model—Goals are integrated into the model as state intent that reflect what the operator or agent would like do as a way of integrating the operator as part of the control system. Complex activity can be ...

	d. Vitech Model Based Systems Engineering (MBSE) Methodology
	(1) Multiple layers of system design abstraction—Vitech has its own detailed approach to this called STRATATM, but as a general feature it can be summarized as follows: the entire system design is captured at a level of abstraction, the abstraction i...
	(2) Model the whole system—this requires having a complete model in terms of depth and breadth, behavior (time independent and dependent) and structure, and boundary conditions. It is more than a sum of views but an integrated whole at successive leve...
	(3) Model system context—a system’s functions and interfaces cannot be fully understood without understanding their interactions with the external environment. This in turn requires a specific focus and explicit rationalization of the system boundary.

	e. Dori Object-Process Methodology (OPM)
	f. Integrated Systems Engineering (ISE) and Process Pipelines in Object Oriented Architecture (PPOOA)
	(1) Operational Concept—this is an abstract model of the operations of a system. A scenario than is a particular path through this concept for a given set of conditions
	(2) Capability—the system’s ability to perform an effect. Scenarios then are transformed into a set of system capabilities
	(3) Quality Attributes/Constraints—constrain the system architecture relative to meeting its functions or performing its capabilities
	(4) Early concurrency modeling—for software intensive mechatronic based systems it is important not to just establish the logical relationships and collaboration in the object model, but to model the concurrency to drive out timing constraints.

	3. Architecture and Modeling Design Languages

	B. CPS System Architecture
	1. “CPS-Like” Engineering, Architecture and Modeling
	(1) Multiple forms of behavior logic are captured. It include basic feedback control, intelligent control, and task-oriented behavior.
	(2) Integration of computational or cyber behavior with physical mechanisms. Systems can be formed by scaling up from the control of physical systems to the highest level mission behavior and include timing constraints.
	(3) Repeatable methodology for assessing the computational needs. Operational tasks can be captured from basic doctrine and related to computational nodes and then mapped to system behaviors.

	2. CPS Engineering, Architecture and Modeling
	a. CPS Architecture and Modeling
	(1) Actors communicate (Lee 2003) with other actors in a model via ports and channels and have fixed parameters that configure its operation. A model of an actor is a hierarchical abstraction of the actor as shown in Figure 23. The model is an actor i...
	(2) The model hierarchy (Lee 2003) has subclasses that inherit actors, ports and parameters of classes.
	(3) Ptolemy II (Ptolemy II 2014) is a modeling and simulation tool based on the actor model. A “Director” in determines the MoC to include the communication mechanism and determines when to execute.
	(4) Simulink and LabVIEW can be considered domain specific actor modeling languages. Simulink has a continuous-time semantic MoC and LabVIEW a dataflow semantic MoC.
	(5) Software objects in OOAD invoke a method (Lee 2003) in a call/return sequence which requires a transfer of control. As Lee explains, this leads to “frail” composition where new components can break interactions and issues of managing threads of co...
	(6) SysML blocks linked via ports in internal block diagrams are “closely related” to actors (Ptolemy II 2014) but reflects a notational standard and do not unambiguously define behavior semantics.
	(7) Actor models have abstract behavior types and exhibit behavior polymorphism (Lee 2003) as opposed OOAD object inheritance and abstract data types. The behavior is determined by the MoCs. The various MoCs supported by Ptolemy II are shown in Figure...

	b. Quality Attributes
	(1) Performance
	(2) Latency
	(3) Throughput
	(4) Capacity
	(5) Modes
	(6) Dependability
	(7) Availability
	(8) Reliability
	(9) Maintainability
	(10) Confidentiality
	(11) Integrity
	(12) Security
	(13) Safety
	(1) Predictable and Reliable Performance—in particular the need to meet deterministic timelines (Derler, Lee, and Sangiovanni-Vincentelli 2011) or real time deadlines
	(2) Cyber security—development of a context-dependent “role” security and trust model for data sharing (Stumpf, Bures, and Matena 2015)
	(3) Safety—an approach to switching logic to safely manage modes in multi-modal systems (Jha et al. 2010)
	(4) Modes—adapting the use of modes (Bures et al., 2016) as a “property” of a component in a smart cyber-physical system (Bures et al., 2015) to determine the best behavior in response to environmental uncertainty.

	c. System Applications

	C. Summary

	III. Agent and object oriented model-based concept design for mobile cyber-physical systems
	(1) System Syntax—a set of components and connectors, their arrangements, structural relationships, and their abstractions. A system syntax can have multiple types of abstraction for multiple types of arrangement or views. For example, a system can ha...
	(2) Components—are the physical elements of the system to include software and hardware. When physical components are realized as a particular physical instance of a generalized abstraction, they will be referred to as objects.
	(3) Connectors—represent the interactions between components (Garlan, Monroe, and Wile 2000) and their abstractions. Connectors may represent physical instantiations or logical abstractions not distinctly identifiable from the components they are asso...
	(4) Interactions—the exchange of energy, material or information between components and the external environment and/or between components themselves. The components associated abstractions can have abstract interactions. Interactions are conveyed thr...
	(5) System Semantics—is the meaning or purpose of a system and its components/connectors beyond its syntax or structure. It consists of behavior logic and properties.
	(6) Behavior Logic—a set of interactions of a system or component over time. Execution of the logic at a point in time is dependent on the specific incoming interaction and the value of the properties at that point in time. Behavior relates to a syste...
	(7) Properties—consist of physical attributes and quality attributes that typically have values or a range of values.
	(8) Physical Attributes—symbols and their values that pertain to the geometry, mass or other physical aspects of a system, component or physical connector.
	(9) Quality Attributes (QAs)—non-physical attributes that further specify a system, component or connector, their behavior logic and the behavior logic’s execution. QAs of focus in this research include performance, reliability, information/data and w...
	(10) Constraints (Garlan, Monroe, and Wile 2000)—”claims” about a system or component’s syntax and semantics “that should remain true over time.” “Typical constraints include restrictions on allowable values of properties, topology and design vocabul...
	A. Mobile Cyber-physical system logical Structure and behavior concepts
	1. System Performer Object
	(1) External Sensors/Actuators—objects/components that exchange energy, material, or signals between the system and the external environment. Sensors convert “stimuli” (Poole and Mackworth 2010) from the external environment into information and actua...
	(2) Direct Sensor/Actuator Control—objects/components that provide direct control or first level hierarchical control of external and internal sensor and actuator objects/components. This control is based on position feedback of the sensor/actuator an...
	(3) Agent Logical Object—an agent as an object/component requires extensive discussion and is addressed subsequently.
	(1) Physical Structural Support and Protection—objects/components that provide primary and secondary structural support to all system objects/components as well as protection against the direct effects of the external environment. Component types incl...
	(2) Power and Energy—objects/components that generate, transform, store, and/or distribute power or energy to components that consume it and that provide the prime automotive force of the mobile system.
	(3) Material Support—objects/components that generate, transform, store or distribute material required by other objects/components. Relevant material in an MIGVS can include fuel, oil, and ammunition.
	(4) Information/Computation—objects/components that generate, transform, store or distribute information required by object/components. Component types include computers, computational stacks, application software support, networks, and resource acces...
	(1) Energy—interactions that provide or dissipate power, generate or absorb a force, support an equilibrium or provide a signal.
	(2) Material—interactions that support the exchange of a solid, liquid or gas.
	(3) Information—interactions that support the exchange of data, information, or knowledge.
	(4) Direct logical interactions this is an abstraction of a direct and same type of interactions. Certain objects can transform the information from one type to another to facilitate some end objective, such as signal to data transformation by a devic...
	(5) Indirect logical interactions are like representations of information indirectly exchanged between a source and a consumer, such as between two software applications.

	2. Context Object
	3. System Connected Object
	a. Operating Resource
	(1) Physical. Physical abstraction is introduced here so as not to bias the solution for MCPS concept design. For example, a gasoline powered engine would use material whereas an electric vehicle would use energy. This can be abstracted to a Physical ...
	(2) Material. A material store object, like a material interaction refers to a gas, liquid or solid. Examples include fuel, oil, and ammunition.
	(3) Energy. An energy store object is purely an abstraction object and will not be elaborated for concept design. Once a technological solution is established, the energy object is likely to show up as an attribute of another object (e.g., battery cha...
	(4) Information. A Context information object is externally generated information provided to the system for its use. Examples include maps, precision geolocation, and information about the Context beyond the system’s sensors.

	b. Payload
	(1) Person. A person object is a human on-board the system that must be physically accommodated or carried aboard the system.
	(2) Operator. Operator(s) must be physical accommodated so as to be capable of operating the system.
	(3) Passenger. A person object not directly involved in the operation of the system (e.g., infantry squad).
	(4) Cargo. Cargo is an object that the system is specifically designed to carry and can be endemic to the system mission (e.g., a dump truck). It also includes personal equipment need by any operators or passengers of the system.
	(5) Operating Resource Augment. These objects are the same as Operating Resource Material Objects (e.g., fuel, oil), but are not part of the systems’ design capacity. An example would be extra containers of fuel stowed somewhere aboard the system.

	c. Person/Person Role
	d. Tactical Network

	4. Mission/Tasks/Desired Trajectory/Goals
	5. Agent Logical Object
	(1) Mission Agent (MA)—controls the overall mission or operation of the system. It initiates, orchestrates and terminates the top level tasks or trajectories. If connected to a larger network or systems of systems it will also respond to commands to a...
	(2) Task Agent—executes the top level task or trajectories. Responds to percepts with world state information from one or more detection agents, determines an appropriate course of action, and generates a command to a single intelligent control agent.
	(3) Detection Agent—interprets world state from data received from sensors and sends percepts to its higher level task agent. Detection agents are the primary means for directly interpreting information about the state of the world. The number of dete...
	(4) Intelligent Control Agent—responds to commands from the task agents and issues the necessary set of coordinated commands to the systems actuators. This is the primary means to bring about an effect in the external environment or change to world st...

	6. System Behavior Thread

	B. solution independent mcps object oriented Behavior concept design
	(1) It is the most commonly used modeling language for systems engineering. It is a descriptive visual language that supports certain object oriented techniques.
	(2) The concept of a block provides the flexibility to model any structural type, to include complex data structures and complex context. It supports structural relationships such aggregation/composition, generalization/specialization and inheritance.
	(3) It can model a variety of connector and interaction types. Proxy ports can be used to represent connector abstractions and then typed by interface blocks. It can be used to represent both horizontal and vertical interactions.
	(4) General and descriptive modeling behavior techniques that can be incorporated into blocks or objects. It will support object oriented decomposition from various class types and then definition of behavior via leaf level classes or objects.
	1. MCPS Domain Structural Model Concepts
	a. World State and World State Model
	b. Context Class
	(1) System Connected—context object that can be stored, housed and/or used within or at the system boundary
	(2) Friendly Force—a context object of another system or organizations that the system interacts with in some symbiotic fashion (e.g., two systems cooperating to achieve some higher level objectives beyond what the system can achieve singularly).
	(3) Terrain—by the definition, the mobility aspect of an MCPS implies that the system traverses some sort of terrain (air, ground, water, etc.). This terrain can be decomposed or structure into a set of classes with objects and attributes.
	(4) Meteorology and Weather—for many MCPS, particularly those that traverse the surface of a terrain, the meteorology or weather are a distinct aspect of the context that can impact the behavior the system, particularly the intelligent aspects of the ...
	(5) Civil—whether expressly designed for civil use or not, most MCPS will likely have to consider or interact with civil entities. These objects include pedestrians, non-friendly force vehicle systems, cultural features and traffic management components.

	c. System and System Performer Classes
	(1) Mobility—a set of performer objects that provide the prime force that enable MCPS movement and the ability to control and support that movement as required.
	(2) Tactical Command Control and Communications (TC3)—as indicated previously in the context discussion, it is rare for any MCPS to operate without some connection and purposeful interaction with other systems. These are the set of performer objects t...
	(3) System Command Control and Autonomics (SC2A)—regardless how an MCPS is physically assembled, it can be viewed logically as a set of autonomic objects that transform and distribute power and that control signals and information as required to suppo...
	(4) Structure—the system performer classes previously described can be decomposed to some component level. To form a system, they must physically assembled in some fashion. These are the endo and exoskeleton objects of the MCPS. These objects can be c...
	(5) Mission or Special—in addition to the common or standard MCPS domain classes described above, a given sub-domain of MCPS can expect to see some specialized or unique mission purpose that can also be logically related as a set of performer objects.

	d. Assigned Mission
	e. Agent Logical Object Model

	2. Solution Independent Behavior and Logical Concept Design
	a. MCPS Logical Composition
	b. Conceptual Data Model
	c. Agent Logical Object Interactions and Behavior
	d. Horizontal Behavior Logic
	e. Vertical Behavior Logic
	(1) Information Support—this is more of a development reality than a necessary component of the stack. Rather than have unique information components for handling similar information (e.g., maps), common information support components will likely be u...
	(2) Operating Environment—provides logical abstraction service (e.g., data management), between applications and the operating system.
	(3) Operating System—provides logical abstraction services to the computer for scheduling tasks, managing memory, etc.
	(4) Resource Access—provides direct access to computational hardware and signal devices (e.g., device drivers).
	(5) Computation—computational hardware
	(6) Signal Control and Distribution—components that transform signals from one form to another to support distribution and physical interface

	IV. palletized Loading System Convoy follower
	A. MIGVS Domain
	1. MIGVS Domain System Class Reference Model
	a. Structure
	b. Survivability
	c. System Command Control (C2) and Autonomics
	d. Mobility
	e. Lethality
	f. Tactical Command, Control and Communications (TC3)
	g. Tactical Intelligence, Surveillance, Reconnaissance, & Target Acquisition/Electronic Warfare (TISR/EW)
	h. Mission and Special Equipment (MSE)

	2. System Context Reference Model
	a. System Connected
	b. Friendly Forces
	c. Threat
	d. Civil
	e. Terrain
	f. Meteorology and Weather
	g. Facilities and Infrastructure

	3. MIGVS Concept Design
	a. Initial Concept Design
	b. System 4+1 Model

	4. Palletized Loading System (PLS) and Convoy
	a. Design Reference System
	b. Design Reference Mission

	B. agent- and object-based PLS concept model
	(1) Purpose #1: Inform and augment the initial need or operational capability specification. Design reference missions are defined in conjunction with the user. Design reference missions should include critical behaviors or desired trajectories and a...
	(2) Purpose #2: Support pre-award concept design feasibility. Identify key attributes of the behavior and the system components required to support a trade study. The selected technology should be identified and linked to the technology neutral compo...
	(3) Purpose #3: Define a logical design to be part of overall system technical baseline. All component objects defined and fully attributed in the technology neutral model or the logical concept design model. The logical concept design model should b...
	1. PLS and Mission Agent
	a. PLS Assigned Mission
	b. Mission Agent Logical Object Hierarchy
	c. Mission Agent Horizontal Interactions
	d. Mission Agent Internal Composition
	e. Mission Agent Behavior
	f. Mission Agent Integration

	2. Material Handling
	a. Material Handling Assigned Mission
	b. Material Handling Logical Object Hierarchy
	c. Material Handling Interactions
	d. Material Handling Internal Agent Composition
	e. Material Handling Agent Behavior

	3. Tactical Command Control and Communications
	4. Intelligence Reconnaissance Surveillance and Target Acquisition
	5. Mobility
	6. System Command Control and Autonomics

	C. PLS model qualitative analysis
	(1) Though data exchange is not shown directly, it can be found by linking the interaction to the appropriate world state model. The data exchanged in many instances will have complex structure (e.g., cargo content), and not easily conveyed on a seque...
	(2) Many variations are possible in the flow of commands and percepts through the system along with variations of the data that they include. A given command may include an entire mission assignment or one tactical object for update. Not clear how man...
	(3) ALOs are not typical OOAD software objects. They do not invoke a method and await a response, rather they interact with commands and percepts as independent actors that can operate concurrently. The behavior does not necessarily require a sequenti...

	V. conclusions and recommendations
	1. Limitations
	2. Future Work
	(1) Logical Model—physical component selection of the performer objects to include human roles or instances. This selection would include which ALOs would be realized as software. Test the handoff the object models for usefulness and problem understan...
	(2) Physical Model—harmonize DBOM component selections with concept CAD EBOM selections. Adjust DBOM solutions as required to meet integration and mass property constraints.
	(3) Execution Model—assess ALO defined software the computational architecture selection. Assess performance and concurrency impacts.
	(4) Deployment Model—complete final concept deployment of the physical architecture. Include software deployed to distribution computation components and embedded networks.

	Appendix. PLS sysml Model diagrams
	B. Material handling
	1. MH Assigned Mission
	2. MH Logical Object Hierarchy
	3. MH Interactions
	4. MH Agent Internal Composition
	5. MH Detection Agent Behavior

	C. Tactical Command control and Communications
	1. TC3 Assigned Mission
	2. TC3 Logical Object Hierarchy
	3. TC3 Interactions
	4. TC3 Agent Internal Composition
	5. TC3 Agent Behavior

	D. Intelligence Reconnaissance Surveillance and Target Acquisition
	1. IRSTA Assigned Mission
	2. IRSTA Logical Object Hierarchy
	3. IRSTA Interactions
	4. IRSTA Agent Internal Composition
	5. IRSTA Agent Behavior

	E. Mobility
	(1) The variable “sAct” is used in lieu of “sMOPAct” to house constraint values. It also can contain measure of time which are separate goal measures elsewhere.
	(2) Goals and trajectories are combined into a single block.
	(3) A greater use of inheritance from patterns that drive a significantly different look to constraints and trajectories. The use of inheritance also requires more use of SysML “redefine” to alter or more definitely type properties that are inherited.
	1. Mobility Assigned Mission
	2. Mobility Logical Object Hierarchy
	3. Mobility Interactions
	4. Mobility Agent Internal Composition
	5. Mobility Agent Behavior

	F. System Command Control and Autonomics
	1. SC2A Assigned Mission
	2. SC2A Logical Object Hierarchy
	3. SC2A Interactions
	4. SC2A Agent Internal Composition
	5. SC2A Agent Behavior

	List of References
	initial distribution list

